
 

 

Faculty of Science and Technology 

Materials Sciences - High Performance Ceramics 

Master 2 

 

2020/2021 

 

Emeric SAUZEAU 

Internship period : from 15 February au 14 June 2021 

Advanced Research Center for Nanolithography 

 

 

 

Internship supervised by  

Bart WEBER and Cyrian LERICHE 

Co-group director PhD of Contact Dynamics 

 

Characterization of topography across the scales 

Mémoire de Master 

http://www.unilim.fr


 

Emeric SAUZEAU | Master Thesis | Université de Limoges | 2020/2021 2 

Licence CC BY-NC-ND 3.0 

Acknowledgement 

For all the help and support all along of the project. I want to thank Cyrian Leriche and Bart 

Weber, respectively a PhD and Group Leader of the Contact Dynamic group. They had allowed 

me to work on an interesting and challenging topic, which has given very nice talks. 

I want to thank Feng-Chun Hsia, who had contributed by sharing his SiN heightmaps. These 

measurements have been paramount for me to have relevant for my project. A warm thank 

Junxiao Du and Felix Cassin for sharing your knowledge and your passion for science. I want 

to thanks to the rest of the team for their welcome inside the team. It was a real pleasure to work 

with all of you. Without forgetting all the people in ARCNL that I met.  

  

Despite the distance and the sanitary condition, I want to thank my family for their precious 

support. 

 



 

Emeric SAUZEAU | Master Thesis | Université de Limoges | 2020/2021 3 

Licence CC BY-NC-ND 3.0 

Droits d’auteurs 

Cette création est mise à disposition selon le Contrat :  

« Attribution-Pas d'Utilisation Commerciale-Pas de modification 3.0 France » 

disponible en ligne : http://creativecommons.org/licenses/by-nc-nd/3.0/fr/ 

 

http://creativecommons.org/licenses/by-nc-nd/3.0/fr/
http://creativecommons.org/licenses/by-nc-nd/3.0/fr/


 

Emeric SAUZEAU | Master Thesis | Université de Limoges | 2020/2021 4 

Licence CC BY-NC-ND 3.0 

Contents 

Advanced Research Center for Nanolithography ................................................................... 7 

Introduction ........................................................................................................................... 8 

1. Surface Roughness ........................................................................................................... 9 

1.1. Atomic Force Microscopy ............................................................................................ 9 

1.2. Topography structure .................................................................................................. 9 

1.2.1. Surface roughness ..............................................................................................10 

1.2.2. Fractal roughness ................................................................................................11 

1.2.3. Roughness structure ...........................................................................................11 

1.3. Samples .....................................................................................................................13 

2. Roughness characterization by correlation function ..........................................................14 

2.1. Height-height Correlation Function (HHCF) ................................................................14 

2.1.1. Definition .............................................................................................................14 

2.1.2. Height-Height Correlation Function fit ..................................................................15 

2.1.3. Height-Height Correlation Function Scipt .............................................................16 

2.2. Power Spectral Density (PSD) ...................................................................................16 

2.2.1. Definition .............................................................................................................16 

2.2.2. Power Spectral Density fit ....................................................................................17 

3. Comparison of the PSD and HHCF. .................................................................................20 

3.1. Contribution of surface profile ....................................................................................20 

3.2. Variation of window size .............................................................................................22 

3.2.1. Artificial surface ...................................................................................................22 

3.2.2. Real surface ........................................................................................................23 

3.3. The differences ..........................................................................................................25 

3.3.1. Phenomenological equations ...............................................................................25 

3.3.2. Mean height level ................................................................................................25 

4. Resolution and roughness structure .................................................................................28 

4.1. Method .......................................................................................................................28 

4.2. Results and discussion ..............................................................................................28 

Conclusion ...........................................................................................................................31 

Bibliography .........................................................................................................................32 

Annexes ...............................................................................................................................33 

 



 

Emeric SAUZEAU | Master Thesis | Université de Limoges | 2020/2021 5 

Licence CC BY-NC-ND 3.0 

Figure summary 

Figure 1 - Group structure in ARCNL ..................................................................................... 7 

Figure 2 – Atomic force microscopy diagram in no contact mode .......................................... 9 

Figure 3 - Example of a surface cross-section ......................................................................10 

Figure 4 - Surface cross-section with the same root-mean-square of heights[4] ....................10 

Figure 5 - Parameters influence upon the roughness structure. [9] .......................................11 

Figure 6 – Surface cross-section – Example of HHCF calculation ........................................14 

Figure 7 - (a) Linear regressions for HHCF and (b) HHCF fitting functions for SIMU ............15 

Figure 8 - (a) Sinusoid function S1 and S2 and (b) the sum of both. .....................................17 

Figure 9 - (a) The ACF and (b) the PSD calculated from the simulated surface ....................17 

Figure 10 - PSD (a) and HHCF (b) from the SiN surfaces ....................................................20 

Figure 11 - PSD (a) and HHCF (b) of simulated surfaces – Window size variation ...............22 

Figure 12 - PSD (a) and HHCF (b) of the real surfaces. .......................................................24 

Figure 13 - Downward, the cropped surface from “Total surface”, upward. H and h are 

respectively the off-set height and the distance between two following points. .....................26 

Figure 14 - The PSD (a) and the HHCF of Pristine-90 with several off-sets ..........................27 

Figure 15 - Scheme of a gaussian divided by the variance (Ω) .............................................28 

Figure 16 - Influence of the resolution on (a) the Rough surface cross-section, (b) the Hurst 

exponent, (c)  Correlation length, (d) Root-mean-square of heights ......................................29 

 



 

Emeric SAUZEAU | Master Thesis | Université de Limoges | 2020/2021 6 

Licence CC BY-NC-ND 3.0 

Table summary 

Table 1 - Roughness parameters obtained by PSD and HHCF ............................................20 

Table 2 - Roughness parameter of simulated surfaces .........................................................22 

Table 3 - Roughness parameters of real surfaces, from PSD and HHCF .............................24 

Table 4 - Correlation values from HHCF and ACF calculation ..............................................26 

 



 

Emeric SAUZEAU | Master Thesis | Université de Limoges | 2020/2021 7 

Licence CC BY-NC-ND 3.0 

Advanced Research Center for Nanolithography 

The Advanced Research Centre for Nanolithography (ARCNL) founded in 2014 in 

Amsterdam. The centre belongs to ASML and the Dutch Research Council (NWO). Since the 

foundation, Joost Frenken is heading ARCNL. 

 

The structure is dedicated to unravelling the physical fundamentals for nanolithography 

technologies. The research program is bonded to the R&D department program at ASML. The 

laboratory is divided into three thematics: Source, Metrology and Materials. Each group are 

thus divided into the subgroup as shown in Figure 1. 

 

Figure 1 - Group structure in ARCNL 

For the internship, I was in Contact dynamic group, co-directed Bart WEBER and Steve 

FRANKLIN.  It is a dynamic team with professor, post-docs, PhD, interns and technicians. On 

the pathway to provide a friction forecast. The group is focused on the understanding of the 

phenomena involving during the friction. Thus, how can the interface influence it?  



 

Emeric SAUZEAU | Master Thesis | Université de Limoges | 2020/2021 8 

Licence CC BY-NC-ND 3.0 

Introduction 

In Tribology, the science of interactive surfaces in relative motion, surface topography plays a 

major role in the determination of the various phenomenon taking place at the interface. In 

realistic systems, the facing surface profiles set the local contact points. In order to understand 

and predict tribological phenomenon, it is of paramount interest to find the most relevant 

method to characterize surfaces. The topography is thus considered as a fractal.  

 

To gather surface information into a set of parameters (Root-mean-square of heights, 

Correlation length and Hurst exponent), two mathematical tools show promising insights: The 

Heigh-Height Correlation Function (HHCF) and the Power Spectral Density (PSD). Whereas 

the HHCF considers the relative height variation with respect to the horizontal distance, the 

PSD considers the absolute height variation. The HHCF is based on the principle of correlation 

function which determined the correlation between stochastic variables (variables whose values 

depend on outcomes of a random phenomenon). Sinha and al. in 1988[1] provide the fitting 

function containing the characteristic parameters of the surface. The PSD for fractal topography 

was introduced by P. Ranganath Nayak in 1973[2], where the fitting function (for PSD2D) 

gathering the three parameters used to qualify surface profiles is still under debate.  

 

In this report, we define and compare the two methods for artificially generated and real 

measured surfaces. From the surface profiles measured, we perform the HHCF and PSD 

analysis method and compare the outcome information on the surface characteristics. For this 

study, measurements were carried out by an Atomic Force Microscopy (AFM) in no contact 

mode (tapping mode). The real surface analysed are 3mm diameter SiN spheres, manipulated 

beforehand to exhibit multiple different surface topographies.  

   

Firstly, I will present the AFM measurement as well as the different surface model needed for 

the analysis, statistical and fractal. From these models, three parameters will be defined. 

Secondly, the PSD and HHCF concepts will introduce, the definition, the calculation and fitting 

methods. The fitting function for PSD2D will be proposed. Thereafter, the PSD and HHCF will 

carry out for SiN and artificial surfaces which lead us to the difference between the two 

methods. In the last part, the consequences of the resolution upon the surface determination will 

be discussed 
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1. Surface Roughness 

1.1. Atomic Force Microscopy 

For this project, the surface measurement is carried on atomic force microscopy (AFM,  

Dimension Icon, Bruker). The AFM is a method based on the interaction between a tip located 

at a cantilever end, and the atoms belonging to the surface. The other cantilever side is attached 

with a piezoelectric which changes the tip-surface distance. Moreover, a laser beam is reflected 

on the cantilever back which provides a tip position feedback. The laser reflection is measured 

by a quadrant photodiode. The AFM diagram in no contact mode is shown in Figure 2. 

  

The AFM results shown in this report come from the no contact tapping mode. In this mode, 

the resonance frequency is applied to the cantilever. The tip-surface interaction is ruled by the 

Leonard-Jones potential. During the measurement process, the tip-distance change regarding 

the roughness and the vibration. This variation induces the potential change. The z-position of 

the piezo element corrects the tip height to keep the potential constant. The computer records 

the height variation of the tip. The result is called a heightmap. 

 

Figure 2 – Atomic force microscopy diagram in no contact mode 

The tip motion along the surface follows two axis named: the fast-scanning axis (FSA) and the 

low-scanning axis (LSA). It means, in an orthonormal plan, that the FSA could be represented 

by the X-axis and the LSA by the Y-axis. Thus, for each value along the Y-axis, the tip measures 

possible heights along the X-axis. This method makes the height values more coherent along 

the X-axis than Y-axis. The data obtained are into a grid shape (or matrix). For the sample 

studied, the X-axis corresponds to the column and the Y-axis corresponds to the lines. The value 

corresponds to the heights, thus the Z-axis. As the measurement was favourited along one axis, 

the matrix is considered as a sum of surfaces cross-section. It is as a surface sliced along the 

fast-scanning axis. This idea needs to be considered for the correlation method. 

The AFM data should be input in a software, named Gwyddion. It allows to read AFM file and 

to transform the data (seen in HHCF script description). 

1.2. Topography structure 

The correlation represents a statistical measure that expresses the extent to which two variables 

are related. It is equivalent to the inter-dependency of two variables. In this context, the data set 
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forms a correlated structure that depends on its nature and profile. Through their statistical 

structure, their behaviour could be predicted. However, often in physical science, the 

relationship will be zero for statistical values above a defined cut-off value. It defines the 

            “     ”                     tical structure[3].  

1.2.1. Surface roughness 

The surface roughness (or roughness) corresponds to the variation heights from a topography. 

The roughness is composed of hills (asperities) or valleys with a high statistical variation of 

size[4]. An example of a cross-section of surface roughness is shown in Figure 3.  

 

Figure 3 - Example of a surface cross-section 

 

The roughness is mainly characterized by the root-mean-square       , σ. It represents the 

height deviation from the mean height level (z) along the x-axis[5], it is definite by: 

𝜎 = (
1

𝐿
∫ 𝑧2𝑑𝑥

𝐿

0

)

2

(1)  

 

where L the cross-section length and z the height deviation from the mean height level. 

 

However, this parameter exclusively represents height information. The lateral information as 

the slope, the width and thus the asperities geometry are unconsidered. This lack of topography 

details leads to similar roughness value sigma for different surface profiles. In Figure 4, 

Different cross-         w             σ b   w                               . 

 

Figure 4 - Surface cross-section with the same root-mean-square of heights[4] 
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Therefore, additional parameters need to describe the surface profile more accurately. In the 

friction field, the characterization of the lateral variation of asperities is provided by the fractal 

model[6].  

1.2.2. Fractal roughness 

The fractal is a model developed by Mandelbrot in 1969[7]. The fractal model describes the self-

similar structure. This property is: through the different magnification, the same structure is 

found. Consequently, the surface shape of the fractal object is independent of the magnification. 

It introduces geometry dimension non-integer, called fractal dimension (Df). It represents how 

your structure fills the space[8]. 

 

In the case of fractal roughness, it is the asperities shape that is observed for different 

magnification. It is like asperities on asperities. However, most of the roughness is not fractal 

within any scales. The fractal model is only appliable within the distance range bordered by the 

cut-off lengths [λ1, λ0]
[6]. The lower cut-    λ1 represents the smallest size of fractal asperity, 

and the upper cut-    λ0 represents the biggest one. The upper cut last distance is also called 

                   (ξ). A                  w            b        λ0 are not involved in a fractal 

structure. Inside the fractal range, the asperity size correlated by the scaling factor (S) with : 

𝑧′ → 𝑧𝑆𝛼 (2) 

W                   (         );  ’,                ;                     ; α,     H      x       

 

The Hurst exponent is linked to the fractal dimension, Df  = E – H with E the upper Euclidean 

dimension (line, surface, cube, etc). In case of cross-section, E = 2 and for the surface E = 3.  

1.2.3. Roughness structure 

The topography variation due to the evolution of one parameter, is presented in Figure 5. The 

figures come from Heusinger and al. paper[9].  

 

Figure 5 - Parameters influence upon the roughness structure. [9] 

The root-mean-square of heights definition is the characterization of the height variation from 

                         . A               σ                                             ,    
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shown in Figure 5a. The height distribution along Z- x      w     .     σ                      

asperities stretching along Z-axis (Height). 

 

The correlation length corresponds to the biggest size of fractal asperities (statistically) 

belonging to the surface. Over the length, the height variation is considered stochastic. As 

shown in Figure 5b, the distance between the two apexes is closer than the other cross-section. 

F                     ξ,                                               .                        

act as a stretching factor along the X-axis. 

 

The Hurst exponent is connected to the fractal dimension (where Df = 2 – α                  -

       ).   w             α                           D . F   α = 1, D  = 2;                      

are smooth in this case. The Hurst exponent corresponds to the jaggedness upon the roughness. 

In Figure 5c,                              α = 0.5      α = 0.9. 

 

A       w ,                                  by       w                by ξ     σ            y. 

                          “b x”                  by α[10], [11]. 

 

I                  “       ”      ,             model provides a deeper understanding of the 

roughness structure. The HHCF and the PSD characterize surface topographies by mean of: the 

root-mean-square of heights, the correlation length and the Hurst exponent (called roughness 

parameters).  
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1.3. Samples 

Two kinds of heightmap have been analysed in this work. The heightmap from the real surface 

and analysed with AFM. Thereby, five surfaces from SiN sphere, with a window size of 

10x10μ     1024x1024  x  ,      b      k  .                           by       roughness 

texture, Ultrasmooth, Semi-rough, Rough and Ultra-rough. Various processes have been 

utilized for the roughness changing: 

• Ultrasmooth: Polished by T. Jacobs. 

• Semi-rough: Collapsing of two balls at ultrasonic speed. 

• Rough: Sandpaper 

• Ultra-rough: Sandblast for few seconds. 

The pristine SiN sphere surfaces will be also analysed. One surface is sampled in a window size 

   10x10μ     1024x1024  x                 -10. The second surface was taken with a 

w    w         90x90μ     2048x2048   xel named Pristine-90. 

 

The second kind is the surface generated. This surface is calculated from a theoretical Power 

Spectral Density curve. Thus, for the example used in the HHCF and PSD presentation, a 

surface called SIMU is calculated with a root-mean-square of heights of 100nm, a correlation 

of 500nm and a Hurst exponent of 0.75. 
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2. Roughness characterization by correlation function 

The roughness structure is quantified by the mean of two mathematical tools, namely PSD and 

HHCF. The two calculation operations express as well as the parameter extraction from the 

curves. Moreover, a focus is made on the HHCF Matlab script that I wrote during the project. 

Next, the two methods compare 

2.1. Height-height Correlation Function (HHCF) 

2.1.1. Definition 

The Height-Height Correlation Function (HHCF) allows quantifying the correlation between 

two heights regarding the distance between them[12]. Thus, the correlation is defined by the 

square of the height difference. Figure 6 is a surface cross-section scheme (along the x-axis). 

The vertical axis showed the height. Two points are at the position x1 and x2 with their 

respective height z(x1) and z(x2). Both points are separated by the distance r.  

 

Figure 6 – Surface cross-section – Example of HHCF calculation 

The HHCF function (g) between only two points is defined by Eq. 3.  

𝑔(𝑟) = [𝑧(𝑥1) − 𝑧(𝑥2)]2 (3)  

𝑤𝑖𝑡ℎ ∶ 𝑟 = 𝑥2 − 𝑥1  

In the case of cross-section, the HHCF considers the average between all the squared height 

difference for the same distance r. Thereby, the heightmaps from AFM measurement are 

calculated from Eq. 4. The HHCF is determinate over a length scale ranging from the pixel size 

(10-80nm) to the window size (90um). 

𝑔(𝑟) =
1

𝑌(𝑋 − 𝑟)
∑ ∑ [𝑧(𝑥 + 𝑟, 𝑦) − 𝑧(𝑥, 𝑦)]2

𝑋−𝑟

𝑥 = 1

𝑌

𝑦=1

(4)  

With: r the distance in pixel separating the two pixels ; Y the matrix limit along the Y-axis 

(pixel) ; X the matrix limit along the X-axis (pixel) ; x pixel number on the X-axis ; y pixel 

number on the Y-axis. 

 

Eq. 4 is the function used by Gwyddion. The function considers the correlation only along the 

fast-scanning axis. The correlation function obtained correspond to the mean of the HHCF of 
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all the cross-sections. This calculation method considers the X-axis (fast scanning axis) 

representing the surface roughness. This consideration is based on an isotropic surface 

hypothesis where statistically, the roughness is the same along with all the directions. 

 

However, Eq. 4 does not give any information about the surface. It is only used to plot the 

HHCF. Thus, Sinha and al.[1] propose an empirical expression for HHCF, represented by the 

intermediate Gaussian-exponential equation form Eq. 5.  

 

𝐺(𝑟) = 2𝜎2 {1 − 𝑒𝑥𝑝 [− (
𝑟

𝜉
)

2𝛼

]} (5)  

With: G(R) the second form of HH F, σ         -mean- q                           , ξ     

                       α     H      x      . 

2.1.2. Height-Height Correlation Function fit 

The HHCF from SIMU surface resulting from the Eq. 4 is shown in Figure 7a (black curve). 

The HHCF is used to be plotted on a log-log scale. The curve shape is composed of two parts 

well distinct: a slope and a plateau. The slope corresponds to the distance range where the 

HHCF increase with the distance r. In the plateau part, the HHCF remains constant with 

increasing distance r for higher values.  

 

A correlation is the synonym of a dependency of a variable on another one. The HHCF 

represents the dependency of a height change with respect to their relative distance. This 

correlation is explained by the fractal structure of the roughness, which is characterized by the 

fractal parameter: the Hurst exponent. When the HHCF does not evolve with the distance, the 

heights are no more correlated. In this area, the roughness represents stochastic meaning, 

represented by on average, the height difference for two points separated by a distance r will be 

the same as this distance increase. Therefore, for distances above the correlation length (cut-off 

length), the plateau value is linked to the root-mean- q                   (σ). The limit between 

the two parts is given by the cut-          ,      y                        (ξ).   

 

Figure 7 - (a) Linear regressions for HHCF and (b) HHCF fitting functions for SIMU 

To achieve the roughness parameters determination, the first idea was to fit with the function 

(Eq. 3). However, in Figure 7b, the fitting function lacks accuracy for low distance. This error 
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cannot be ignored. It is due to the importance of this range for the link between the slope and 

the Hurst parameter. 

 

A second method is operated for the parameter determination; two linear regressions are plotted 

in a log-log scale, in Figure 7a. The first regression fits the slope where the coefficient is equal 

   2α (𝐺(𝑟) ∝ 𝑟2𝛼 for linear scale). The second regression fits the plateau where the ordinate is 

 q       2σ².                        w                       , it is calculated from the 

intersection of both, 𝜉 = (
2𝜎2 

𝐴
)

1

2𝛼
.  

2.1.3. Height-Height Correlation Function Scipt 

Before running the HHCF MatLab script (in Annexe 1), the curvature from sphere samples 

should be subtracted from the surface. The curvature does not belong to the roughness. Thereby, 

Gwyddion fits each line (cross-section) with a 2nd-degree polynomial, then subtracts them to 

the actual measurement to flatten the surface profile. Moreover, the AFM measurement 

involves scanning error like the misaligned row or the apparition of scars due to local defaults. 

These defaults are corrected with Gwyddion by extrapolation from the surrounding pixels. 

 

Afterwards, the script processes the HHCF as defined with Eq. 2 and fits with the two linear 

regressions. However, the distance range where the two linear regression functions are applied 

still needs to be defined. 

 

The purpose of the slope fit is the number of values considered. The linear regression fits at 

minimum the six first HHCF values (from the smallest distances on). Under this limit, the 

correlation is considered too dependent on the resolution. From these six points, fits are 

calculated considering more and more values, until considering the twenty-first point (15 fits 

are made in total). The Hurst exponent value is obtained from the fit with the minimum error. 

 

For the plateau regression, the HHCF needs to be cropped in half due to the influence of the 

picture edge on the average. For the higher distance r, the HHCF calculation (in Eq. 4) considers 

  w                         (“X- ”).             y,                                                   

       .     ,     σ  alue is given by the intercept of the fit with no slope. It represents the 

mean value of the plateau. Instead of to fit, the intercept is calculated by the average of the last 

HHCF values.  

2.2. Power Spectral Density (PSD) 

2.2.1. Definition 

To introduce the power spectral density, the surface line is considered as a continuous function, 

despite the matrix                      .      “                ”     b                     

summation of sinusoidal functions, called Fourier Series. The roughness is considered thus as 

periodic. The Fourier transform (FT) of the sinusoid summation gives a summation of Dirac 

pics relative to the amplitude and the wave-vectors of the sinus function. An example of a 
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surface profile composed of two sinusoidal functions in Figure 8b. In Figure 8a, the two sinuses 

are plotted apart. Where S1 (x) = A   (β1 x) and S2(x) =     (β2x) with S1 and S2 the sinusoidal 

functions, A                          β1, β2        q       .     w           (λ)     λ1=2π/β1  

    λ2=2π/β2 
[13]. 

 

 

Figure 8 - (a) Sinusoid function S1 and S2 and (b) the sum of both. 

The Power Spectral Density (PSD, Eq. 7) is the Fourier transform of the Autocorrelation 

Function (ACF, Eq. 6). With the ACF, the correlation is characterized by the factor of two 

heights. It depends on the distance between two pixels or called wavelength in this case. 

𝐴𝐶𝐹(𝑟) =
1

𝑌(𝑋 − 𝑟)
∑ ∑ [𝑧(𝑥 + 𝑟, 𝑦). 𝑧(𝑥, 𝑦)]

𝑋−𝑟

𝑥 = 1

𝑌

𝑦=1

= 𝜎2𝑒
−(

𝑟
𝜉

)
2𝛼

(6)  

𝐶(𝑞) = ∫ 𝐴𝐶𝐹𝑒−2𝜋𝑖𝑞𝑟𝑑𝑟
+∞

−∞

(7)  

W    : σ,         -mean-square of the roughness amplitude, ξ,                       , α, H     

exponent, q, the wavevector, r, the horizontal distance 

2.2.2. Power Spectral Density fit 

For the SIMU surface, the ACF and the PSD2D are represented in Figure 9. Show by ACF curve 

in Figure 4a, the correlated part is related to low distances. The ACF depending on the 

distances. The stochastic part is related to the constant part of the curve for the high distances. 

For the ACF the constant value represents the mean height level and equal to 0 when this level 

is subtracted from the heightmap. The correlation length is the distance r when ACF equals 1/e.  

 

Figure 9 - (a) The ACF and (b) the PSD calculated from the simulated surface 
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The FT of the ACF brings the correlation in the reciprocal space, in frequency (q) with 𝑞 =
2𝜋

𝑟
 

(m-1). If the PSD is calculated over a cross-section of a surface, called PSD1D, its unit is m3. In 

this work, the PSD is calculated over a surface, called PSD2D, the unit corresponds to m4. The 

PSD is calculated from the centre of the map and thus average the value from the different 

directions.  

 

The PSD2D displayed in the log-log scale is composed of two parts: a plateau and a slope. As 

well as the HHCF, the PSD depends on the frequency linearly.  Their meaning is physically 

equivalent to the HHCF, the plateau representing the non-correlated features where the slope 

represents the correlated features.  The curve shape is the same for PSD1D. The frequency range 

of the two parts is edged by three frequencies. The smallest frequency corresponds to the larger 

feature into the surface, so qL = 2π/  w                             -section. The higher 

frequency corresponds to the smallest distance, so the resolution q1 = 2π/          .           

frequency is the transition frequency between the plateau and the slope,        “k   ”. I     

bonded with the correlation length and equal to: q0 = 2π/λ0.  

 

Relative to the Yuxuan Gong and al.[14] and the Fourier transform of an exponential, the PSD 

function shape is defined by : 

𝑃𝑆𝐷(𝑞) =
𝐴

(1 + (𝐵𝑞)2)𝐶+0,5
(8)  

With A, a constant ; B, the correlation length ; C, corresponds to a roughness exponent different 

to the Hurst exponent. 

 

The parameter A is different according to the PSD dimension (PSD1D or PSD2D). Thereby, 

Heusinger and al. based on the work of Palasantzas[15], give Eq. 9 for the PSD1D :  

𝑃𝑆𝐷1𝐷(𝑞) =
2𝜎2𝜉

(1 + (𝜉𝑞)2)𝐶+0.5
(9) 

  

However, this equation has no meaning for the PSD2D. In that way, different equations are 

proposed by Giorgio Franceschetti and Daniele Riccio[10]. The equivalent of the HHCF equation 

(Eq. 5) in reciprocal space does not exist. However, among the equations, the power spectrum 

exponential equation is the closest form than the Eq. 10, and definite by : 

𝑃𝑆𝐷2𝐷(𝑞) =
2𝜋𝜎2𝜉2

(1 + (𝜉𝑞)2)
3
2

(10)  

By analogy to the previous equations, the 3/2 exponent could be a result of C+0.5 with C=1. 

Thereby, the proposed PSD2D equation is : 

𝑃𝑆𝐷2𝐷(𝑞) =
2𝜋𝜎2𝜉2

(1 + (𝜉𝑞)2)𝐶+0.5
(11)  

The proposed equation does not     b                 k w        H      x      ,     α    

calculated from a linear regression define by PSD ∝ q-2(α+1). The frequency range considered 
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during the fit is determined by the cut-off wavevector qξ (= 2π/ξ)  from Eq. 9 and the high cut-

off wavevector qres. 

 

The root-mean- q    , σ                by                         .  

𝜎𝑚 = 2𝜋 ∫ 𝑞 × 𝑃𝑆𝐷(𝑞)𝑑𝑞
𝑞1

𝑞𝐿

(12)  

Where m is equal to 2 for PSD1D and equal to 3 for PSD2D.  

 

The slope of the PSD curve (in log-log scale) represents the fractal part, as explained in the 

previous subpart. The range is delimited by q1 and q0. Within his range, the Hurst exponent can 

be extracted by slopePSD = -2(α+1).      by                    , 𝑃𝑆𝐷 ∝ 𝑞0
−2(𝛼+1). The link 

between the correlation length and wavevector have been shown by Palasantzas, w     λ0 = 4ξ. 

    ,     “k   ”                     by : 

𝑞0 =
2𝜋

𝜆0
=

𝜋

2𝜉
(13)  

 

 

Through the two descriptions of HHCF and PSD, the two methods introduce different ways for 

the roughness structure understanding. The HHCF determines the dependency of the variation 

height according to the horizontal distance. On the other hand, the variation in the reciprocal 

space. Nevertheless, both methods show a linear relationship (in log-log scale) with the heights 

and the relative distance for fractal structure. When the distance between the heights, the curves 

(from HHCF and PSD) reach a plateau. The heights are not in the same fractal structure. 
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3. Comparison of the PSD and HHCF. 

In the previous part (2.), the PSD and HHCF have been introduced. The two methods determine 

two mathematical methods to obtain the roughness parameters. In this part, we will see the 

consequences of the calculation ways.  

3.1. Contribution of surface profile 

The first analysis between the PSD and the HHCF is carried on all the SiN samples. The 

roughness parameters in Table 1 come from the PSD and HHCF curves are represented 

respectively, in Figure 10a and Figure 10b.   

Table 1 - Roughness parameters obtained by PSD and HHCF 

 

 

Figure 10 - PSD (a) and HHCF (b) from the SiN surfaces 

F       σ,                                         w            -mean-square calculated by 

the Eq. 1                         . F       σPSD,            2π     b      ,  x         U    -rough 

surface, with the reference. According to the Eq. 12, σPSD curve represents the area under the 

curve               by 2π. I                 σPSD is only equal to the area and not to the real 

root-mean-square of heights.     ,       w             D                               “N w 

  D”           w   D2D formula Eq. 14 proposed is: 

𝑃𝑆𝐷2𝐷(𝑞) =
2𝜋 (

𝜎
2𝜋)

2

𝜉2

[1 + 𝑞2𝜉2]𝐶+0.5
=

𝜎2𝜉2

2𝜋[1 + 𝑞2𝜉2]𝐶+0.5
(14) 

Eq. 14 will be the equation used all the next PSD analysis in this report.  

  

For the PSD2D, an artefact appears at the high frequencies. As well as the correlation length, the 

biggest frequency takes to fit is correspond to 4 times the resolution size. With this size 

Parameter Method Pristine-90 Pristine-10 Ultra-smouth Semi-rough Rough Ultra-rough

PSD 1,74 1,19 0,92 1,11 7,30 47,07

New PSD 10,93 7,55 5,79 6,22 46,10 295,72

HHCF 11,60 7,39 5,18 6,63 40,54 187,50

Reference 11,62 7,23 4,83 6,56 41,05 167,79

PSD 0,80 0,86 0,87 0,74 0,89 0,93

HHCf 0,76 0,74 0,76 0,60 0,81 0,87

PSD 568,36 273,58 270,94 424,98 735,71 1457,97

HHCF 580,98 260,63 256,03 326,31 521,75 773,11

σ (  )

ξ (  )

α
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estimation of the smallest feature in the heightmap allow better fit. These changeset are thus 

considered for the following analysis.  

 

Between the surface Pristine-10, Ultra-smooth and Semi-     ,                σ     ξ        

change between both method and between the sample. Indeed, from the reference value, the σ 

difference goes from 0.09 nm to 0.93nm, with the closest value obtained by HHCF. Regarding 

to the PSD and HHCF curves, the order is hard to determine for PSD ones notably for the low 

frequencies. However, for HHCF the plateau levels are relevant from the values. The roughest 

of three Pristine-10, it has a higher level than the Semi-rough and the Ultra-smooth which is the 

smoother. In case of the correlation length, no references could be determinate, but the 

difference is slight, from 16nm to 19nm between both methods. Their determination is 

considered good in both cases. In case of the Hurst parameter, as well as the correlation length, 

no reference is calculated. The PSD and HHCF find quite the value, where the difference are 

between 0.4 and 0.14. The parameters keep the same trend, where the lower value belong to the 

Semi-rough surface for both figures (PSD and HHCF). Then, these surfaces are well 

characterized by the two methods. 

 

The second comparison corresponds to the analyse between both Pristine surfaces, token from 

different spheres (but technically with the same properties) and with different window size, 

90μ      10μ . M       ,               ,                           w    w              have 

been cut out to fit in the diagram. As w                                  ,     σ    ues do not 

change between the method and are equal to the reference. Nevertheless, as the heightmaps do 

                              ,       σ              . A        σ is calculated for Pristine-90 

(11.62nm) regarding Pristine-10 (7.23nm). This difference is also visible through the plateau 

level in both cases. For the correlation length, both methods agreed on the value for the surface 

Pristine-90            y                                . H w    , ξPristine-90 is twice higher than 

    ξPristine-10, supporting the difference between the two structures. On the other hand, the Hurst 

exponent represents a common point through the HHCF with 0.76 and 0.80 for Pristine-90 and 

Pristine-10 respectively.  

  

With the samples, Rough and Ultra-rough, the limits ar         .                (δ) b  w    

σPSD                        w         R             (δ ~ 5  ) b                U    -rough 

        (δ ~ 130  ). A               30             b           σHHCF from Ultra-rough surface. 

The differences are explained by the presence or not the plateau. Only the Rough surface 

        HH F     y    b                  .     σPSD     R                 σHHCF Ultra-rough 

contains an error with respect to the reference. The plateau shape does not appear for both cases. 

Thus, t       k           y                                            σ       b                     

is low. The PSD curve from Ultra-         w     y        w       “k   ”.              y        

roughness structure is higher than the window size. The same trend is observed with the 

correlation length. A difference of value between both methods is about 200nm for Rough 

surface and twice high for Ultra-              (δ ~ 700  ). K  w             “k   ”    q    y 

                    4ξ    .        q    y            han the lower one.  
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The method comparison shows similarities in the correlation function. However, when the 

correlation length is too close to     w    w     ,     σ, ξ             .                     

important for HHCF than the PSD.  

Moreover, for the two Pristine surfaces, the difference comes from the roughness structure the 

non-isometry of the surface (see in 3.2.2). 

3.2. Variation of window size 

In this subpart, the influence of the window is focused. The set of samples are analysed. Firstly, 

the PSD and the HHCF are calculated from the artificial surface and thus the real surface in 

second. These samples allow bringing to light the surface anisotropy.    

3.2.1. Artificial surface 

Five surfaces have been generated on                             , σ = 11.6  , ξ = 580  , 

α = 0.75. E                            w    w                      b        x    (2048x2048). 

The resolution changes regarding the window size: 4.39 ; 43.95 ; 439.45 ; 580.00 ; 634.77 

nm.pixel-1. The surfaces have been called with respect to their resolution. The PSD and HHCF 

curves are shown in Figure 11. The parameters obtained by both correlation functions are 

shown in Table 2.  

Table 2 - Roughness parameter of simulated surfaces 

Parameter Method 4,39 43,95 439,45 580 634,77 

σ (  ) 
PSD 14,0 13,5 26,0 53,3 66,9 

HHCF 11,6 11,6 11,6 11,6 11,6 

α 
PSD 0,75 0,75 0,75 0,75 0,75 

HHCF 0,76 0,77 0,51 0,41 0,37 

ξ (  ) 
PSD 474,4 374,8 171,6 84,1 67,7 

HHCF 447,4 511,4 988,4 1135,9 1191,5 

 

 

Figure 11 - PSD (a) and HHCF (b) of simulated surfaces – Window size variation 

For each method, all the curves obtained overlapping each other. For isotropic and periodic 

surfaces, the window size and the resolution do not influence the shape. However, the 
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parameters calculated from the curves depend on the window size, the resolution, and the 

correlation method.  

 

F    HH F, σ     q                         . F     y w    w (or distance range) the plateau 

                  w                   σ.     H      x                      q           

reference for the two surfaces, with the most limited resolutions. When the resolution becomes 

closer to the correlation length inputted, α                            0.37 w                    

634.8 nm.pixel-1. The correlation length maintains similar trends. It is slightly underestimated 

                w                       ξ/10. I       w                                    w-

resolution surfaces.  

 

For the PSD, the changing of the parameter is due to the curve shape. The rupture between the 

slope and the plateau is discontinuous, so does not match with the PSD formula. The misfit 

induces a bad estimation of the correlation length. For a resolution of 44 nm.pixel-1 and more, 

the correlation length is calculated to be inferior to the resolution. Due to this wrong estimation, 

    H      x                                                 w    ξ <           . O    w   , α 

is equal to the reference. The fit does not match the curve. The areas under the curves do not 

correspond. The root-mean- q                                                          α     

ξ.  

 

Thereby, the surfaces with the same parameters have PSD and HHCF curves overlapping each 

other. The resolution or the window size do not influence the curve shape. However, the 

parameter determination by HHCF is influenced. When the resolution and the correlation length 

         ,                        (α     ξ)                                          .      

influence is unseen with the PSD determination. The PSD curve misfit induces wrong values 

for all the roughness parameter determination. The abrupt change with the fractality and the 

stochastic properties of the roughness does not represent the concrete cases.  

3.2.2. Real surface 

The PSD and HHCF have been calculated for five SiN sphere surfaces with different window 

sizes, presented in Figure 12. The different surface analyses correspond to a cropped version 

of the Pristine-90 surface. For each surface, the pixel number was reduced to decrease the 

w    w     : 90μ  ; 45μ  ; 22.5μ  ; 11.3μ  ; 5.1μ .     w    w                 k         

resolution equal for all the surfaces. The surfaces are designated regarding their window size.  
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Figure 12 - PSD (a) and HHCF (b) of the real surfaces.  

In the case of a concrete surface, the PSD curves are still overlapping (in Figure 12a). Although 

the curves include differences. From a smaller window size, the PSD amplitude is lower than 

Pristine-90. As the window has decreased with respect to the sample, the lower frequency as 

well. The PSD at low frequencies is noisy regarding the high frequency. All the PSD curves 

match in the high-frequency range. The HHCF (in Figure 12b) describes an evolution of the 

plateau level with the various surfaces. It seems to start on lower distance r with lower window 

size. On the first distance r, the slopes are similar but with an offset between.  

 

The parameters obtained by both correlation functions are presented in Table 3. For each 

surface, the root-mean-square of heights of reference is calculated. 

Table 3 - Roughness parameters of real surfaces, from PSD and HHCF 

 

 

F         D, HH F                  , σ                x       by                 HH F 

        . H w    ,     σPSD           w        w            σReference     σHHCF.     σPSD and 

σHHCF values increase for Pristine-5.1 surface. For               ,                w    σReference 

    σHHCF does not exceed 0.4 (showing a proper fit on the plateau). About Hurst parameters, 

both methods do not describe the same       .     αPSD          w       αHHCF decrease. 

Nevertheless, the variations are small and thus considered constant. The differences are more 

significant for the correlation length. The HHCF describe a maximum loss of 121nm regarding 

    x             241  . F   b           ,     σ              -5.1 is higher than the Pristine-

11.3 one. 

The root-mean-square of heights and the correlation length variation according to the window 

size shows the non-isotropy of the surface. However, the HHCF and PSD are based on an 

Parameter Method Pristine-90 Pristine-45 Pristine-22.5Pristine-11.3 Pristine-5.1

PSD 11.1 10.1 9.8 8.9 9.2

HHCF 11.6 10,0 9.4 7.8 8.1

Reference 11.6 9.7 9,0 7.9 7.5

PSD 0.58 0.61 0.64 0.64 0.63

HHCF 0.76 0.73 0.72 0.71 0.7

PSD 556.71 440.22 382.18 312.26 318.54

HHCF 581.1 554,00 534,00 460.3 486.6
ξ (  )

σ (  )

α
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isotropic surface model as they are calculated by average. The window size changes the 

statistical distribution of the height and width of the roughness. The window size influences the 

results obtained by HHCF and PSD. Moreover, the jaggedness from the low frequencies could 

b                                 σ. F   b  h methods, the fractal structure is considered as low 

influenced by the window size.   

 

3.3. The differences 

We have analysed different surfaces with different window size and different roughness 

          .              y                                                    σ     ξ. I       

subpart, the curve overlapping is explained by the phenomenological equations for PSD and 

            HH F. I               ,   w   σ                           D      .   

3.3.1. Phenomenological equations 

The difference could be explained by the phenological expression Eq. 5 (2.1.1) and Eq. 7 (2.2.1) 

for HHCF and PSD, respectively. In Table 1 and 3,     w    w                σ     ξ. I  

                                     . W    α                       . I  Eq. 5, the decreasing of 

σ     ξ                                         . F     w           ,      x   ential part has an 

                  .     HH F      y            σ                                     (        

α). F                  ,      x                             .     ξ                             

curve induces a decrease of the exponential. However, this effect is not enough to balance the 

σ           . 

  

O              ,     ξ    y                     D. A                 , ξ     ease the PSD value 

and to the numerator, it decreases the PSD value. The two trends have barely the same weight 

         D      .     ,    y σ                  . H w    ,     w                q    y (10+5 

~ 10+8 nm) in the formula reduces the amplitude of     σ            . 

3.3.2. Mean height level 

The HHCF operation is based on the difference between two heights squared and the ACF is a 

factor of two heights. The two methods are calculated from the Gwyddion method, Eq. 4 (2.1.1) 

and Eq. 6. 

  

The difference between ACF and HHCF is the surface information kept after the calculation. 

With the subtraction, the HHCF does not consider the common height. The ACF considers all 

the values as the raw information to input in the calculation. For example, we consider a non-

isotropic surface, with the mean height subtracted. So, the mean height corresponds to zero. 

The surface is now cropped. As the surface is non-isotropic, the height distribution is different. 

The mean height in the new window size has drifter form 0 level. The drift is similar to a height 

offset. 

  

For example, a scheme is presented in Figure 13. Three heights (p1, p2, p3) have been measured 

equidistantly (          )                          “               ”.        set height is 
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represented by the distance H. The heights are equal to: p1 = H - h ; p2 = H ; p3 = H + h. Table 

4 shows the results after the HHCF and ACF have been carried out on the 3 heights.  

 

Figure 13 - Downward, the cropped surface from “Total surface”, upward. H and h are respectively the off-set 

height and the distance between two following points. 

 

Table 4 - Correlation values from HHCF and ACF calculation 

Compared 

heights 
HHCF ACF 

p1 / p2 h² H(H-h) 

p2 / p3 h² H(H+h) 

p1 / p3 4h² H² - h² 

 

The HHCF results do not contain the offset value. Thereby, for each height difference 

calculated, the HHCF does not induce the reference. It solely characterises the height variation. 

The ACF includes the offset value in the correlation result. As the root-mean-square of heights 

is defined as the height variation from the mean height. The offset value does not belong to the 

variation, thus does not belong t      σ.     ,                        σ w                          

a significant part of the total height. 

  

In the pathway to developing the idea, several off-set has been applied over the Pristine-90. 

Their HHCF and PSD is shown in Figure 14. As predicted, the HHCF (Figure 14b) does not 

detect any difference regarding the surfaces, they are equal. However, the PSD curves show 

                  w    q    y, b  w    q      qξ. G       y,        teau will be substituted by 

                            . K  w                                                  σ. A           

          w                     , σ w                                . 
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Figure 14 - The PSD (a) and the HHCF of Pristine-90 with several off-sets 

The geometry changing of the plateau part induces a shift of the correlation length too. The 

“k   ”                                    . A                   b         w          ,     “k   ” 

                                                                10μ . 

 

The HHCF and the PSD show similar properties to describe the corresponding surface. The 

roughness parameters correspond. However, even across the several window size and for real 

surface, the PSD curve overlapped whereas is not the case for the HHCF. It is justified by the 

lack of isotropy on the surface and the influence within the fitting equation. The second effect 

represents a drift of the mean height level that can be only visible for the drifts over 10nm for 

Pristine-90. 

 

For Pristine-90 and Pristine-10, their difference is solely unexplained by the structure 

          .                  ξ     σ            b          by     w    w     ,                y. 

Moreover, in the case of several measurements as for the work of T. Jacob and al.[16], The 

anisotropy is strongly represented is relevant to the overlapping of shift. Thus, as said in the 

article, more than 100 measurements should be made to have a good result on the PSD. 

  

For assembling several PSD curves, the loss of information regarding the resolution should be 

considering.  
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4. Resolution and roughness structure 

Previously, the resolution issue was introduced. It was due to the statistic shift with the different 

surfaces. However, the roughness structure was unmodified. 

In this part, the issue is to investigate the structure changing regarding the resolution. Between 

the roughness parameter and the roughness structure, the difference will be discussed. All the 

correlation measurement is obtaining from the HHCF. 

4.1. Method 

The resolution decreasing is carried out by averaging the height with their respective height 

neighbours. The average area is defined by a 3D gaussian. This method allows an isotropic 

averaging.  Thereby, a gaussian is calculated from its own surface, by : 

Ω =
𝐹𝑊𝐻𝑀

2√2 ln(2)

1

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
(16) 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = exp [−
𝑥2 + 𝑦2

2𝛺2
] (17) 

W   : Ω,              | FWHM,      w               x    | x     y,                         

 

The value of FWHM is choosing as an input for the gaussian size. Once calculated, the gaussian 

is convoluted with the surface. All the pixels inside the gaussian are averaging. For the 

averaging, all the pixels do not have the same weight due to the gaussian shape. The pixel on 

the side of the gaussian has the most reduced weight. However, the number of pixels considered 

is higher on the side than in the middle. It means all the distances (from the first pixel) have the 

same weight despite the number of pixels. The current resolution is defined by the maximum 

width at the bottom. This length corresponds to six times the variance, as shown in Figure 15. 

Above this length (diameter) the pixels are uninvolved. Then, the resolution obtains a function 

from the FWHM. 

 

Figure 15 - Scheme of a gaussian divided by the variance (Ω) 

4.2. Results and discussion 

The resolution decreasing was carried out on the surfaces: Pristine-10, Ultra-smooth, Rough 

and Ultra-smooth. The initial resolution is 9.8nm and was reduced to 63.7; 127.4nm; 254.8nm; 

509.6 and 1273.9nm. The surface cross-sections of Rough are shown in Figure 16a. After the 
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first convolution, the roughness becomes smoother. The jaggedness which belonged to the 

surface has been loose. However, the roughness height does not change. With a lower 

resolution, the asperity heights and slope have decreased. The surface becomes more uniform. 

The lower resolution has changed the roughness structure. Then, the width of asperities has 

increased, the height decreases, and the jaggedness disappears. 

  

For each surface and resolutions, the roughness parameters have been plotted in Figure b-d. 

 

Figure 16 - Influence of the resolution on (a) the Rough surface cross-section, (b) the Hurst exponent, (c)  

Correlation length, (d) Root-mean-square of heights 

In Figure 16c, the correlation according to the resolution is plotted. The evolution is composed 

of 2 parts. For high resolution, the slope presents either a valley or a hill. This phenomenon is 

due to the Hurst exponent determination. This variation is still low regarding the second part. 

The second part starts after a threshold where the correlation length increase. This threshold 

operates for resolutions under the initial correlation length. As seen with the window size in the 

              (3.), w                       b    ξ/10,                          b   y         .     

correlation lengths calculated above the threshold resolution could be like the gaussian structure 

(due to the convolution). The same threshold i   b       w    σ,    Figure 16b. Firstly, the 

value is constant. Above the threshold, the root-mean-square decrease. The decreasing means 

that higher heights involve the average. Moreover, before the threshold, the Hurst exponent is 

influenced by the resolution. In Figure 16c,                            α      ,                  

above 0.95 at the threshold value. Above they trend to 1 which is le limit.    

 

Then, when the gaussian size is lower than the correlation length. Only the Hurst parameter is 

influenced by the resolution decreasing. By extension, slightly the correlation length due to the 

calculation method of HHCF. Then, only the fractal structure is influenced. When the resolution 

reaches the threshold, the correlation length increase and the root-mean-square of heights 
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decrease. These trends correspond to the differences seen with the surface cross-section 

in Figure 16a.  

 

Moreover, the Hurst exponent is highly influenced by the high resolutions. The Hurst exponent 

is bond to the fractal dimension (Df, by Df = 2 – α),      senting how the line (surface) fills a 

    .                              b                     w y                       D ,    α. 

             α                y                                     . Only a part of the fractal 

roughness is measured.  

I               b        α                              ,                             b          . 

It is the underneath structure from the fractal one. However, the lower resolution on the AFM 

is 10nm (tip size). Therefore, this measurement is completed by the other measurements 

performing on smaller scales, as the Transmission Electron Microscopy [16]. 
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Conclusion 

In summary, we have characterized the surface topography of SiN samples with various 

roughness. For all of them, the PSD and HHCF allowed us to qualify the roughness 

characteristics from the nano to the macro-scale. By the calculation of the root-mean-square 

height, the correlation length and the Hurst parameter; the two methods appeared to show a 

similar analysis quality but also their own drawback. The differences reside in their response to 

the surface anisotropy. For the PSD, it solely influences the curve shape. That property induces 

easier overlapping of the curves. However, the value is still different. Thus, the overlapping 

should consider many PSD to overcome surface anisotropy. On the opposite, the HHCF 

amplitude is strongly influenced by the statistical drift of σ. The curves are too different to 

obtain an overlapping. The discrepancy of these curves profile points out of the sensitivity of 

the HHCF outcomes on the measurement window size.   

 

Secondly, as the fractal structure characterizes the lateral variation of the topography, the 

resolution has a strong influence on the roughness parameter. In this manner, when the 

resolution is close enough to                               , ξ         s. This change corresponds 

to the convolution of the tip (from AFM) or the gaussian. Accordingly, the Hurst parameter 

trends to 1 and is highly influenced by the high-resolution variation. The comparison of two α 

values from surfaces with different resolutions lacks relevance. To find the true value of α, the 

information entailed within the structure underneath must be taken into account. All the fractal 

information will be considered.  

 

My work at ARCNL represents a great experience. All the friction phenomena about the nano-

scaled surface are still under debate. Hence, many subject mixing physics and/or chemistry was 

carried out using such analysis. During this internship, I have developed my English skills and 

the knowledge to understand and characterize nano-scaled topography. Through this work, we 

provide tools and interpretations that shall help future scientists to understand and compare 

surface topographies for a large range of length scales. 
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Annexe 1. HHCF script 
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Caractérisation de la topographie de surfaces à travers différentes échelles 

La topographie nanométrique de surface a été caractérisée. La variation de hauteur considérée 

comporte une structure fractale sur les faibles faible distance. Sous la longueur de corrélation 

(ξ),    x                   é é  .                    (     éq      ),           é      é        

    ' x          H     (α).     q          x                é   é    '                é       à 

celle de corrélation, elles n'appartiennent pas à la même structure. Elles n'ont plus d'influence 

 '         '     .      y     q       q                (σ)                 é .           é    

surface est définie par l'élargissement latéral et horizontal (ξ    σ)   y            é   é ,    

           é         à          'é       (α).          é                        (  D)                

de corrélation entre hauteurs (HHCF) nous permettent de décrire et de quantifier la topographie 

à l'aide des trois paramètres. Le HHCF considère la variation de hauteur relative par rapport à 

la distance horizontale, tandis que le PSD considère la variation de hauteur absolue. Les 

mesures de corrélation ont été réalisées sur les surfaces artificielles et SiN. Avec une 

optim        (    σ)                                D2D, les deux méthodes ont les mêmes 

interprétations de la surface. Cependant, le fonctionnement de l'AFM influence les résultats. 

Alors que le HHCF est influencé uniquement par la distribution statistique des hauteurs, le PSD 

dépend en plus d'une variation de référence. Le second point est que la modification de 

résolution montre la limite de mesure pour α. 

Mots-clés : Topographie, Fractal, PSD, HHCF, Anisotropie 

Characterization of topography across the scales 

The nanometric surface topography has been characterized. The height variation considered has 

a fractal structure over short distances. Under the correlation length (ξ), two heights are 

correlated. For these distances (and frequencies), the roughness is dependent on the Hurst 

exponent (α). When the two heights are separated by a greater distance than the correlation, 

they do not belong to the same structure. They do not influence each other. The root-mean-

square of heights (σ) is thus calculated. The surface roughness is defined by the average lateral 

and horizontal widening (ξ and σ) of the asperities, and their evolution across the scale (α). 

Power spectral density (PSD) and height correlation function (HHCF) allow us to describe and 

quantify topography using the three parameters. The HHCF considers the relative height 

variation with respect to the horizontal distance. While the PSD considers the absolute height 

variation. The correlation measurements have been performed on artificial surfaces and SiN. 

With an optimization (on σ) of the fitting function of the PSD2D, the two methods show the 

same analysis. However, the AFM operation influences the results. While the HHCF is 

influenced only by the statistical distribution of heights, the PSD additionally depends on a 

reference variation. The second point is that the changes in resolution show the limit of the 

measure of α. 

Keywords : Topography, Fractal, PSD, HHCF, Anisotropy  


