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Atomistic mechanisms 
for frictional energy dissipation 
during continuous sliding
S. Yu. Krylov1* & J. W. M. Frenken2

After more than a century of detailed investigations into sliding friction, we have not arrived yet at a 
basic understanding of energy dissipation, even for the simple geometry of a rigid slider moving over 
a perfectly periodic counter surface. In this article, we use a first-principles-based analysis to establish 
the atomistic mechanisms of frictional energy dissipation for a rigid object that moves continuously 
in the periodic surface potential landscape of a solid with vibrational degrees of freedom. We identify 
two mechanisms that can be viewed as (i) the continuous pumping of energy into the resonant 
modes, if these exist, and (ii) the destructive interference of the force contributions introduced by 
all excited phonon modes. These mechanisms act already in a purely dynamic system that includes 
independent, non-interacting phonon modes, and they manifest irreversibility as a kind of “dynamical 
stochastization”. In contrast to wide-spread views, we show that the transformation of mechanical 
energy into heat, that always takes place in real systems due to the coupling between phonon modes, 
can play only a minor role in the appearance of friction, if any. This insight into the microscopic 
mechanisms of energy dissipation opens a new, direct way towards true control over friction.

Friction is a phenomenon of high practical importance. In spite of the great progress made in the investigation 
of sliding friction and related phenomena1–7, our fundamental understanding of the origin of friction is still far 
from complete and a wealth of nontrivial physics remains hidden8. A thorough understanding of the fundamental 
mechanisms of energy dissipation will help us to gain true control over friction. By definition, friction is due 
to the irretrievable loss of the energy and momentum of the sliding body, and this loss is somehow related with 
the coupling to internal degrees of freedom. In the last decades, a large number of studies has been devoted to 
the possible roles of phononic, electronic and other excitations (see, e.g.8 and references therein) but the central 
question—why and how the exchange of mechanical energy from the moving slider to these internal degrees 
of freedom becomes irretrievable—remains to be answered. Unfortunately, this question is difficult to answer 
experimentally. At first glance, the obvious answer might seem that the irreversibility is directly associated 
with the transformation of mechanical energy into heat. This simple logic seems to be defied by results from 
straightforward atomistic modeling9, by the (unjustified) notion that excited phonons would “ballistically” carry 
energy away from the contact (see, e.g.3) and by recent, numerical calculations for a realistic phonon spectrum10, 
in which friction forces are found to arise even in the complete absence of damping, i.e. of thermalization of 
mechanical energy into heat. In a recent publication10, we demonstrated how the combined excitation of multiple 
phonons in an atomic-scale stick-slip event leads to motion that exhibits the characteristics of dissipation, even 
when these phonons are not damped. We now turn our attention to the more general question of how energy is 
dissipated and friction emerges during continuous sliding, when there are no slip events to excite the phonons 
simultaneously.

From a statistical-mechanics perspective11 and atomistic derivations of the Generalized Langevin Equation 
(see, e.g.12 and references therein and see below, in more detail), it can be argued that dissipative forces can be 
generated in a purely dynamic system of non-interacting phonon modes, where no thermalization can take place. 
As far as we know, in the framework of this first-principle-based approach, the concrete underlying mechanisms 
of frictional energy dissipation have never been addressed and neither has the possible role of thermalization 
that always takes place in real systems. In this paper we address these issues, following an atomistic derivation 
of the dissipative force and identifying the phononic mechanisms of sliding friction.
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In the most familiar theoretical description of atomic-scale friction1,8,13, provided by the mechanistic Prandtl-
Tomlinson model14,15, dissipation is not addressed explicitly. More sophisticated theories are usually based on 
the conventional Langevin equation (LE)

For the sliding motion of a body with mass m over a substrate with interaction potential V(r), this equation 
includes a dissipative force Fdiss, a random force (thermal noise) Frand and a driving force Fext. The dissipative 
force is assumed to be proportional to the slider’s velocity v and a time- and velocity-independent damping 
factor (dissipation rate), η.

In this form, the dissipative force is sometimes referred to as “viscous friction”. Although extremely helpful 
in describing many observations, ranging from macroscopic friction to refined experiments on the atomic scale 
with Friction Force Microscopy1, this approach remains semi-empirical: the value of η is to be determined by a 
comparison of calculated forces with experiment, while the underlying dissipation mechanism remains hidden. 
Interestingly, one finds that stick-slip motion, as routinely observed on the full range of length scales, can be 
reproduced by the LE only if the value of the damping factor η is constrained to a narrow interval, close to critical 
damping. We are only starting to find out what physics would restrict η to such values8,16.

Within the context of non-equilibrium statistical mechanics11,17, the evolution of an object interacting with 
a bath of possible excitations is described by a Generalized Langevin Equation (GLE) with memory, which is 
expressed by a dissipative force of the following form,

with η̃  a memory kernel (generally, a tensor). According to Eq. (3), the force experienced at a given moment in 
time depends on how energy has been invested into and retrieved from the bath at previous times. The traditional 
model Eq. (2) tacitly assumes that the memory decay is extremely fast, η̃(t − t ′) = ηδ(t − t′), but this does not 
find reasonable justification. In this perspective, friction is due to memory, rather than memory loss.

As was shown by a number of authors12,18–20 in the context of a variety of problems in condensed matter phys-
ics, for solid systems with vibrational degrees of freedom, the GLE can be derived from first-principles-based, 
atomistic considerations. Assuming independent, non-interacting phonon modes in the solid (and hence, the 
absence of any thermalization in the system) and a linear coupling between the motion of the rigid sliding object 
and the phonons in the substrate, the derivation (sometimes called “standard derivation”21) leads to a dissipative 
force of the form of Eq. (3), with the memory kernel η̃  explicitly related with the interatomic interactions. A 
remarkable feature of this approach is that frictional energy dissipation (at least the force proportional to veloc-
ity and directed against the motion) appears in a purely dynamical system without energy thermalization. If so, 
the phonons of a purely harmonic substrate act as the bath. It has been suggested12,20 that this could serve as the 
basis for a simulation method that would be alternative to the traditional Molecular Dynamics method and that 
would be free of the necessity to artificially introduce some kind of thermostat in the system.

As far as we know, besides a formal analogy with a “dynamical stochastization” similar to the 
Fermi–Pasta–Ulam problem22,23, little is known about how such a “dynamical bath” can work. Basically, at least 
three fundamental questions should be answered. First, under what circumstances is the “dissipative force” Fdiss 
really frictional and is the mean dissipation rate η nonzero? Second, what are the physical mechanisms that 
lead to irretrievable loss of mechanical energy of the slider motion to the substrate? Third, will these dynamical 
mechanisms remain dominant in real systems where phonons always have a finite lifetime and thermalization, 
i.e. the transformation of mechanical energy into heat, does take place, after all.

In this paper, we try to answer these questions following the formal results of the “standard derivation” and 
considering an (idealized but instructive) rigorously treatable problem of a particle moving with a given constant 
velocity in a periodic surface potential landscape (see Fig. 1).

We show, in particular, that a systematic transfer of mechanical energy of the relative motion of the particle 
into the phonon system of the periodic substrate is determined by two complementary mechanisms. They can 
be viewed as (i) the pumping up of “resonant” and “nearly-resonant” modes and (ii) the “destructive interfer-
ence” of the force contributions related with all the other excited phonon modes. To our surprise, we find that, 
in combination, these two mechanisms lead (for a large solid) to a dissipative force that oscillates in time but 
has a nonzero, time-independent mean value. The oscillations of the dissipative force may seem unexpected but, 
actually, they are natural and they should not be confused with the trivial oscillations of the quasi-static (con-
servative) lateral force experienced by the slider. What is also interesting, is that the result is almost independent 
of the existence and value of the finite phonon lifetime. In other words, in the present case of continuous sliding, 
friction, a phenomenon of irretrievable loss of energy and momentum, is determined by these two dynamical 
mechanisms, and is independent of the subsequent transformation of the mechanical energy accumulated in 
the vibrational modes of the solid into heat.

Dissipative force
Details of the atomistic derivation of the GLE can be found in the literature, see, e.g.12,19,20. In short, in the con-
text of sliding friction, one starts with the full system of coupled Newtonian equations of motion for the sliding 
particle and for all atoms in the substrate. In the representation of normal vibrational modes of the substrate, 
their equations of motion turn out to be relatively simple, assuming a purely harmonic substrate and a linear 

(1)m
··
r = −∇rV(r)+ Fdiss + Frand + Fext.

(2)Fdiss = −ηv.

(3)Fdiss(t) = −

∫ t

0
η̃(t − t ′)v(t ′)dt′,
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coupling between the particle and motion of the substrate atoms. These two approximations guarantee that there 
is no direct or indirect coupling between the phonon modes, and that the interaction of the sliding particle with 
each of the phonon modes is independent of its interaction with the other modes. Then the phonon equations 
of motion can be solved analytically. Besides an obvious dependence on initial conditions, these solutions reveal 
the dependence of the current state of any mode on the entire history of the particle motion on the substrate. 
Substituting these solutions into the particle’s equation of motion, we arrive at GLE of the form of Eq. (1), with 
V(r) the free energy. In addition to the quasi-static force, the equation includes the “dissipative” force of the form 
of Eq. (3) and a “noise” term that depends on the initial conditions. These three contributions constitute the full 
lateral force experienced by the particle. For a system that is in equilibrium at the start of the particle’s motion, 
the noise term constitutes a random force that satisfies the fluctuation-dissipation theorem. Within the scope of 
this paper, our interest is reduced to the dissipative force Eq. (3), which is independent of the initial conditions 
for the phonon modes, but depends on the initial conditions for the particle and the full history of its motion. 
The memory kernel has the form12,19,20

Here, r is the particle position, ωk the frequency of the k-th phonon mode of the solid, and φk is the particle-
phonon coupling coefficient for that mode, given by

where qk stands for the generalized coordinate of the k-th mode and WPS(r) is the potential energy of the parti-
cle–solid interaction calculated as a sum of all relevant atomic pair interactions, taking into account deviations 
of the solid atoms from their equilibrium positions; the superscript (0) indicates that the derivative is taken for 
equilibrium positions of all atoms in the lattice. As expressed in Eq. (5), WPS and φk both depend sensitively on 
the position of the sliding particle, r.

To clarify the origin of the dissipative force, it is convenient to rewrite the combination of Eqs. (3) and (4) as

Here, the time integral defines the generalized coordinate of the k-th phonon mode at the current time t as 
an integrated response of that mode to the particle’s motion over its entire trajectory from 0 to t. The structure 
of the integrand is straightforward. The k-th mode is excited at every point in time t ′ with a contribution to its 
amplitude that is proportional to the particle velocity at that time and with an efficiency that is determined by the 
dynamic interaction gradient ∇rφ

∗
k
[r(t ′)]. The phonon time correlation function cos[ωk

(
t − t ′

)
] in (6) describes 

the periodic evolution of that contribution between the time t ′ , at which it is generated, and the current time t. 
These contributions are integrated (without any form of damping), in order to accumulate the full history of the 
motion-induced excitation of the mode. The result is multiplied by ∇rφk[r(t)], to get to the force experienced, 
in turn, by the sliding particle at time t due to excitation of mode k that it has generated itself between t and all 
the previous times t ′. The total dissipative force, acting on the particle is obtained as the sum over all phonon 
contributions.

(4)η̃[r(t), r(t ′), t − t ′] =
∑

k

ω−2
k cos[ωk(t − t ′)]∇rφk[r(t)]∇rφ

∗
k [r(t

′)].

(5)φk(r) =

(
∂WPS(r)

∂qk

)(0)

,

(6)Fdiss(t) = −
∑

k

∇rφk[r(t)]

∫ t

0
ω−2
k cos[ωk

(
t − t ′

)
]∇rφ

∗
k [r(t

′)]v(t ′)dt′.

Figure 1.   Schematic of the geometry considered in our theoretical treatment. A rigid slider, symbolized 
here as a single particle, is forced to travel at constant speed over a substrate, with which it experiences a 
perfectly periodic, sinusoidal interaction. This interaction leads to the excitation of phonons in the substrate, 
each exerting a force on the slider that oscillates in time. The total force, felt by the slider, is formed by the 
combination of all these oscillatory, phonon-based contributions. Even when no damping is introduced in this 
calculation, this combination exhibits the damping characteristics of a genuine friction force.
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The factor ω−2
k  appears in (4) and (6) in a natural way12,19,20 and it manifests the fact that the coupling of the 

slider motion to phonons is stronger for slower modes, which needs to be accounted for twice, namely both in 
the excitation of the phonons and in their delayed “back action” on the slider motion. Interestingly, this factor 
compensates the effect of the density of phonon modes that scales within the Debye model as ω2

k , thus introduc-
ing an essential influence on the magnitude of the dissipative force.

Basic assumptions
We consider the idealized but instructive case that the sliding particle moves with a given constant velocity v 
(see Fig. 1). This situation is representative for the case that the particle is forced to slide by a hard spring. In a 
more general description, the velocity would not be constant, but it would evolve in accordance with the GLE. 
In our idealized case, we avoid such a variation and the dissipative force experienced by the particle is simply 
given by expression (6) with constant v. By dividing the dissipative force Fdiss(t) by −v, we obtain the dissipa-
tion rate η. In our constant-velocity case, the dissipative force is reduced to the traditional form of (1), but with 
a time-dependent, microscopically defined η(t).

In order to capture the periodic nature of the particle–substrate interaction potential, with the substrate lat-
tice period a,  we assume a sinusoidal form for all particle-phonon coupling factors φk(r) = Ak sin(2πr/a+ αk) 
and r = vt, so that

with the phases αk determined by the position of the particle in the surface potential landscape at the starting 
point t = 0. Assumption (7) ignores the fact that, in principle, there can also be spatial periodicities at play, related 
with the wavelengths of the phonons. Effects related to these natural spatial periods can manifest themselves 
for a sufficiently small solid, when the phonons are “pinned” as standing waves to the geometry of the solid, e.g. 
with nodes at the edges. Such finite-size effects should not play a role for a large solid, for which such pinning 
does not occur as a result of the finite lifetimes of the phonons. Analysis of finite-size effects is in progress and 
will be reported elsewhere.

As a further, simplifying assumption, we take the amplitudes of the particle-phonon coupling factors Ak equal 
for all modes k. Equal coupling of the particle to all phonon modes is probably far from realistic, but it should 
provide a meaningful first estimate in the limiting case of an atomically small contact between the particle and a 
single substrate surface atom. This is the only restrictive assumption of our approach, but we expect it not to be 
crucial for our results. Our aim is to identify the physical mechanisms responsible for a systematic, irretrievable 
loss of the slider’s mechanical energy to the substrate phonon system.

Summarizing, we follow the first-principle-based derivation of the dissipative force, and we explore the most 
general feature of the particle-solid interaction, namely its obvious lateral periodicity, with the lattice period of 
the substrate.

Phononic mechanisms of sliding friction
We illustrate the result of our calculations by first examining the limit of a large solid, for which the phonon 
frequency spectrum tends to a continuous one. In this limit, the minimum phonon frequency approaches zero, 
while the maximum frequency ωmax is always finite and reflects atomic-scale vibrations with the shortest wave-
lengths. In this continuum limit, we replace the summation over all phonon modes in Eq. (6) to an integration 
from 0 to ωmax. In this integration, we assume a straightforward Debye density of phonon states that scales as 
ω2
k , appropriate for a three-dimensional solid. This allows one to correctly account for the full variety of phonon 

modes (for a given ωk there are typically multiple modes with different wave vectors).
Results for this calculation are illustrated in Fig. 2, panel a.
Except for the very first peak at the start of the particle’s motion, the dissipative force exhibits very regular 

oscillations with double the “washboard” frequency ωwb = 2πv/a that directly reflect the lattice periodicity (see 
(7)). The mean friction force is nonzero and constant in time and this remains unchanged, also for long times. In 
the example of Fig. 2, the particle velocity is chosen a factor 10 smaller than the sound velocity of the substrate. 
Changing velocity—even by an order of magnitude—we observe that the amplitude of the force oscillations 
(except for the first peak) and, hence, the mean friction force are linear in v,  in accordance with (2) and (6). This 
means that whereas the dissipation rate η in equations of type (1) and (2) is velocity independent on average, on 
a more microscopic scale it is an oscillating function of time.

The result is practically independent of the starting point: the example of Fig. 2 is given for αk = 0 for all k 
in (7), but changing the initial phases causes only a change of the very first force peak and a certain phase shift 
of the force oscillations at longer times. Nevertheless, the amplitude of oscillations and the mean friction force 
turn out to be independent of initial phase. The starting point within one atomic spacing is not well defined in 
practice, and one can be interested to see whether and how the behavior is changed in the case of an ensemble 
average over the initial phases. Straightforward calculations show that this causes a certain (somewhat less than 
40%) reduction of the amplitude of the force oscillations, with the instantaneous force values never reducing to 
zero, and, importantly, the mean friction force remains precisely the same as in the case of a single, fixed initial 
phase, such as the example shown in Fig. 2, panel a.

The observed oscillations of the dissipative force may seem surprising and they should not be confused 
with obvious inherent oscillations of the quasi-static lateral force given by the first term in r.h.s. of GLE (1). 
Space periodicity of the interaction, although hidden in the formal expression (3) for the dissipative force with 
memory, appears explicitly in the memory kernel (4). Interestingly, the dissipative force oscillations follow half 
of the lattice period (see Fig. 2) rather than the full one. The explanation is suggested by the structure of the 

(7)∇rφk(t) = Ak

2π

a
cos

(
2π

v

a
t + αk

)
,
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general expression (6). Both the excitation of the phonon modes, as described by ∇rφ
∗
k
[r(t ′)], and the force 

response experienced by the particle, as determined by ∇rφk[r(t)], oscillate with the washboard frequency, see 

Figure 2.   Dimensionless dissipative force (in arbitrary units) as a function of time (expressed in units of the 
shortest phonon period, 2π/ωmax ) for a particle sliding at constant velocity over an infinitely large, harmonic 
solid; positive values correspond to dissipation. In this example, the particle velocity is 10% of the velocity 
of sound, so that the washboard frequency is 0.10ωmax . (a) Shows the result of integration over all phonon 
frequencies, from 0 to ωmax . The other panels correspond to contributions of particular phonon frequency 
ranges: a narrow range of frequencies within ±10% around the washboard frequency 2πv/a (b), a wider range 
of ±20% (c), and the upper (d) and lower (e) ranges complementary to the frequency range of (c). The first 
washboard period (the first lattice period passed by the particle) is marked in blue.
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(7). Consequently, the result is expected to have a cos2(ωwbt) character. However the phonon time correlation 
function is not δ(t − t

′) but cos(ωk(t − t
′)) , and the frequencies of the phonons involved are very different. 

In this perspective, the highly regular force oscillations of Fig. 2, panel a, which indeed appear to be close to 
cos2(ωwbt), appear rather surprising.

Of course, the energy lost by the slider and accumulated in the substrate is equal to the integral of the dis-
sipative force over the travelled distance. In our constant-velocity example this is directly proportional to a 
straightforward time integral of the dissipative force. For example, in the case of Fig. 2, panel a, the accumulated 
energy oscillates around a mean value that increases linearly in time.

To visualize the role of different phonons, in Fig. 2 we also present the force contributions of particular fre-
quency ranges. Panels b and c show the contributions of two frequency windows centered around the washboard 
frequency, with bandwidths of ± 10% and ± 20% of ωwb , respectively. For the narrower phonon range, panel 
b, one observes an increasing oscillation amplitude, which should be interpreted as a signature of the (nearly) 
resonant contributions, and the increase lasts up to relatively long times, after which the maximum force starts 
to saturate. For a wider phonon frequency window, panel c, the force rises more quickly and saturation appears 
earlier. With further widening of the range, the result rapidly approaches the total force, presented in panel a. 
Panels d and e show the effects of the frequency ranges that are complementary to that of panel c, namely with 
frequencies from 0 to 0.8ωwb and from 1.2ωwb to ωmax, respectively. The sum of the contributions in panels c–e 
is just what is shown in panel a. We see that phonons with frequencies that are not close to ωwb do not produce 
friction at long times but they do so at relatively short times and, importantly, they compensate the force increase 
related with nearly-resonant modes, which leads, as a result, to the regular oscillations of the total force and the 
time-independent mean friction force. In fact, we can see here a direct manifestation of dynamical stochastiza-
tion. The coupling of the slider motion to each individual phonon mode oscillates with its own frequency and 
the corresponding “single-phonon memory” never decays. The associated force contributions are—in them-
selves—fully reversible (except for ‘the resonant” ones, see in detail below). Nevertheless, the integrated effect 
of many phonon modes turns out to be irreversible and the mean friction force is non-zero. The closeness of 
the force oscillations to cos2(ωwbt) , as simply prescribed by the velocity of the slider and the lattice periodicity, 
and the nearly complete absence of phonon signatures, manifests the rapid decay of the effective, integrated 
memory, which appears to be close to δ(t − t

′) . The appearance of friction is directly related with this rapid 
decay of the combined memory. In a sense, this provides a partial justification why the conventional approach 
of Eq. (2) provides such a good approximation in many cases, albeit that we now recognize explicitly that on the 
microscopic scale the dissipation rate η is time- and space-dependent.

In order to see how this compensation effect works, it is instructive to inspect individual contributions 
to Fdiss(t), related with specific phonon modes. In particular, we should distinguish two classes of modes, 
namely those with a frequency ωk that coincides precisely with the velocity-dependent washboard frequency 
ωwb = 2πv/a and those for which this is not the case. The former class can be considered “resonant” with the 
periodic excitation, introduced by the sliding particle. Resonant and non-resonant contributions to Fdiss(t), 
obtained from a calculation for a finite system with 100 equidistant phonon modes are shown in Fig. 3, panels a–c.

In the resonant case, the oscillation amplitude and the mean force both increase linearly in time (panel a). 
This linear increase may seem counterintuitive, but it is completely in line with the general mechanics of driven 
vibrational motion in the absence of damping. When an oscillator is subjected to a resonant, periodic excitation 
of constant strength, its amplitude increases linearly in time, and so does the force response experienced by the 
driver. Clearly, the resonant modes of the substrate are permanently pumped up in this way and the correspond-
ing energy is lost by the sliding particle.

Each of the non-resonant contributions (Fig. 3, panels b and c) exhibits a complex behavior that combines 
oscillations with twice the washboard frequency, as an effect of the lattice periodicity, and “super-oscillations” 
reflecting the effect of memory: the investment of the particle’s energy into the substrate’s mode is periodi-
cally changed into the return of energy from the mode to the particle. The period of the super-oscillations of 
2π/ | ωk − ωwb | is completely determined by the frequency difference. On a large time scale, the non-resonant 
contributions oscillate symmetrically around zero, with a zero mean value. The energy exchange between the 
particle and each non-resonant mode is periodic, without leading to a systematic transfer of energy from the 
particle to the substrate or vice versa. This may make most of the modes seem irrelevant for friction in the 
system of independent phonons, because of their “wrong” frequency, but this view is not justified. Panel d 
shows the combined effect of two modes with different frequencies, namely one below the washboard frequency 
( ω = 0.9ωwb; see panel c) and one above, ω = 1.1ωwb. We see that the interference of the two modes causes a 
more rapid increase of the force oscillations than in the resonant case, as well as changes in the sign of the force 
that are different with respect to single-phonon case. As a result, the combined result of these two modes plus 
the resonant one exhibits a stair-case-type behavior, see Fig. 3, panel e. This is in contrast to the simple, linear 
increase of the resonant contribution, indicated in panel e by the blue dotted line. With the addition of further 
non-resonant modes, the staircase becomes more pronounced, panel f. When a large number of non-resonant 
modes are taken into account, panel g, the stairs are close to ideally flat. The explanation for this behavior is 
straightforward. Each of the non-resonant modes starts with a positive contribution at t = 0 (panels b and c in 
Fig. 3), and so does the sum of the contributions of all non-resonant modes. The time evolution of this sum is 
characterized by “destructive interference” between the (non-resonant) modes, which actually makes the sum 
decrease at later times, almost perfectly compensating the continued growth of the resonant contribution. The 
interference leads to the counterintuitive result that even though the sliding particle periodically invests and 
recollects equal amounts of energy into and from each non-resonant mode, the sum of all these exchanges 
exhibits a long-term signature.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19964  | https://doi.org/10.1038/s41598-021-99437-z

www.nature.com/scientificreports/

Figure 3.   Single- and few-phonon contributions to the dissipative force as a function of time, calculated for a finite system 
with 100 equidistant phonon frequencies. In (a–g) the particle velocity is again set to 10% of the velocity of sound, so that the 
washboard frequency is 0.10ωmax . (a–c) Demonstrate individual phonon contributions for specific frequencies: 0.10ωmax 
(resonance, (a)), 0.08ωmax (b) and 0.09ωmax (c). (d–f) Correspond to sums of several frequency contributions: 0.09ωmax 
and 0.11ωmax (d), 0.09ωmax , 0.10ωmax and 0.11ωmax (e), 0.08ωmax , 0.09ωmax , 0.10ωmax , 0.11ωmax and 0.12ωmax 
(f). As a continuation of this series, (g) shows the sum over all 100 frequency contributions (which formally correspond to the 
spectrum of a Debye solid of 100× 100× 100 atoms). (h) Is similar to (g), but with the washboard frequency shifted away 
from resonance to 2πv/a = 0.105ωmax. Blue dotted lines are guides to the eye and indicate the growing force amplitude of 
the resonant contribution, seen in (a).
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The time duration of the first plateau reflects a finite-size effect that is completely determined by the difference 
between the discrete phonon frequency levels. In the example of Fig. 3, panel g, that difference is 0.01ωmax, so 
that the plateau has a length of 100/ωmax. With increasing size of the solid and, hence, decreasing frequency dif-
ference, the time duration of the first plateau grows up to infinity, in full accordance with the long-term behavior 
of the dissipative force in the continuum limit, presented in Fig. 2, panel a.

Interestingly, if the particle velocity is such that there is no exact resonance, the first force “plateau” remains 
practically the same, as is illustrated by Fig. 3, panel h for a wash board frequency slightly above 0.10ωmax, but 
instead of a subsequent step-like increase, the force changes sign, exhibiting a super-oscillation for the full sum 
of forces and a corresponding mean friction force that tends to zero on a large time scale. This suggests that for 
a sufficiently small solid with a pronouncedly discrete phonon spectrum, the friction behavior can be very dif-
ferent, depending on whether or not the resonance conditions are met. Again, this is a finite-size effect. For an 
infinitely large solid, for which the first plateau is infinitely long, such a difference is rendered irrelevant.

On the role of thermalization
At this point, we turn to what is perhaps the most relevant question, which is whether these mechanisms of 
irretrievable energy loss, namely, the continuous feeding of energy to the (nearly)-resonant phonon modes and 
the destructive interference of all the others, are also dominant in real solids. The crudest assumption that we 
need to reconsider is that of the complete absence of damping. In reality, phonon lifetimes are always finite, due 
to anharmonicity of the atomic interactions in the solid and as a result of crystal lattice imperfections. In due 
time, this will always redistribute the sliding-induced phonon excitations over all vibrational degrees of freedom 
and re-establish an equilibrium distribution of phonon occupation levels. Surely, this redistribution will erase 
all memory and render the lost energy of the sliding particle truly irretrievable. This memory loss has been 
ignored completely in the derivation of (6). In order to estimate the role of this thermalization of the lost energy, 
we introduce the finite lifetime of phonons in our calculations as an exponential memory decay through an 
additional factor exp

(
− t−t

′

τk

)
 in the time integral in (6). For simplicity, we assume that for each phonon mode 

k, the lifetime τk is a factor Ŵ larger than the phonon period, i.e. τk = Ŵ 2π
ωk

, so that each phonon ‘lives’ for an 
average of Ŵ periods. In Fig. 4 we adopt an extreme level of damping of Ŵ = 10 periods and again inspect selected 
single-phonon contributions.

Due to the finite phonon lifetimes, the force contributed by the resonant mode (panel a) no longer diverges 
but instead grows towards a maximum level that is proportional to Ŵ . For the non-resonant modes we recognize 
two effects in Fig. 4, panel b. First, the long-time average of the force experienced by the particle due to the 
non-resonant modes becomes nonzero. For modes not too close to resonance, this contribution is proportional 
to Ŵ−1, which can be regarded as a manifestation of the irretrievable loss of mechanical energy due to the trans-
formation into heat. Second, the super-oscillations characteristic for non-resonant modes with infinite lifetimes 
(compare with Fig. 3, panel b), are damped. We find that the reduction in force contributed by the resonant 
and near-resonant modes is largely cancelled by the appearance of nonzero contributions from the other, non-
resonant modes. This cancellation makes the overall influence of phonon thermalization on the dissipative force 
surprisingly weak. Even for the very severe phonon damping of Ŵ = 10, the force oscillation amplitudes and the 
mean friction force turn out to change less than 10%, as seen in Fig. 4, panels g and h. Note, that the damping 
has removed the long-term staircase and up-and-down behavior that were present as finite-size effects in Fig. 3, 
panels g and h. Results similar to those in Fig. 4 for a discrete phonon spectrum are obtained from calculations in 
which we integrate over the full, continuous phonon spectrum of a large solid with damping. The finite phonon 
lifetimes hardly produce any changes with respect to the dissipative forces in Fig. 2, panel a for the completely 
undamped situation. We see in all these cases that even in the presence of strong phonon damping, friction 
emerges in a natural way as an intrinsic memory effect and the direct transformation of mechanical energy into 
heat is not essential.

Summary
In conclusion, in answer to the question where friction comes from, we distinguish three basic mechanisms of 
irretrievable loss of mechanical energy and momentum. These are (i) the continuous pumping of the phonon 
modes that are resonant or nearly resonant with the velocity-dependent washboard frequency of the sliding 
motion; (ii) the destructive interference between the contributions of all phonon modes of the solid; (iii) direct 
transformation of mechanical energy of excited phonon modes into heat. Mechanisms (i) and (ii) work at long 
and short times, respectively. The interplay between different vibrational modes is intricate and leads to enormous 
variations in time of the relative contributions of (near)-resonant and other modes. When combined, mechanisms 
(i) and (ii) produce a constant mean friction force, almost immediately after the slider starts moving. This is 
so even for a perfect, harmonic solid with infinite phonon lifetimes, in which mechanism (iii) is not active. In 
realistic solids, phonon lifetimes are always finite and mechanism (iii) comes into play, reducing the dominant 
role of the resonant modes and increasing the bandwidth around resonance of modes noticeably contributing 
to friction. But the influence of mechanism (iii) on the total friction force is practically irrelevant.

Outlook
The observed, perfect interplay between resonant and non-resonant modes is surprising and may be a direct 
consequence of our simplifying assumptions of a phonon spectrum with equidistant frequencies and of equal 
coupling strength between the moving particle and each of the phonon modes. In the context of this article, we 
have not explored whether more realistic choices for the spectrum and the coupling would lead to a definite 
time signature in the total friction force.
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Even though our analysis is formulated in the context of phononic excitations, the basic concept is more 
general and applies just as well to other internal degrees of freedom of the solid. The restriction to a constant 
sliding velocity should also not be regarded as a limiting aspect. If the velocity changes in time, other phonons will 
be resonant with the slider’s new washboard frequency, while the destructive interference will always be active.

In this paper we only lightly touched upon finite-size effects. These will be considered more extensively 
elsewhere. However, one important prediction can be made already at this stage. If the washboard frequency is 
well outside the frequency ranges covered by the system’s phonon bands, mechanisms (i) and (ii) cannot con-
tribute to the mean friction force (see Fig. 2, panel d) and, hence, only the phonon thermalization mechanism 
(iii) remains. Consequently, for sufficiently small substrate dimensions and low slider velocities, friction should 
be substantially reduced. This can serve as the possible, first-principles-based explanation of the reduction of 
friction on sub-micron surface islands, that was recently observed experimentally3, and it illustrates how the 
new insights on the microscopic mechanisms of energy dissipation, presented in this article suggest new, direct 
ways towards true control over friction.
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