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Abstract: Overlay metrology measures pattern placement between two layers in a semiconductor
chip. The continuous shrinking of device dimensions drives the need to explore novel optical
overlay metrology concepts that can address many of the existing metrology challenges. We
present a compact dark-field digital holographic microscope that uses only a single imaging
lens. Our microscope offers several features that are beneficial for overlay metrology, like a large
wavelength range. However, imaging with a single lens results in highly aberrated images. In
this work, we present an aberration calibration and correction method using nano-sized point
scatterers on a silicon substrate. Computational imaging techniques are used to recover the
full wavefront error, and we use this to correct for the lens aberrations. We present measured
data to verify the calibration method and we discuss potential calibration error sources that
must be considered. A comparison with a ZEMAX calculation is also presented to evaluate the
performance of the presented method.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The aggressive reduction of semiconductor device dimensions as stated by Moore’s law [1] has
driven many improvements in optical wafer metrology and semiconductor processing equipment
like lithography. Integrated circuits consist of multilayer complex structures with feature sizes
below 10 nm that need to be controlled in terms of placement (overlay, OV) and minimum feature
size (Critical Dimension, CD). As a result, overlay and CD need to be robustly measured with
sub-nm precision at high throughput on many points on a wafer, requiring small measurement
times in the milli-second range [2].

Optical overlay metrology has seen notable advances over the years to keep up with the
demanding requirements of the semiconductor industry. For many years image-based overlay
metrology (IBO) using box-in-box (BiB) metrology targets has been the main approach. IBO
uses a bright-field microscope to create an image of this BiB target and OV is determined by
measuring the position of the inner box edges with respect to the outer box edges. Significant
improvement of metrology precision and robustness came when the box structures were replaced
by gratings. These advanced imaging metrology targets have a smaller size allowing more
features in a device and more edges which improves the precision [3,4].
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Another big step forward was the introduction of (micro) diffraction-based overlay metrology
(DBO) where an overlay target consists of overlapping grating-pairs [5]. DB0 is a scatterometry-
based technique for measuring overlay on advanced layers at high throughput [6]. DBO measures
on metrology targets that consist of small overlapping gratings with approximately 10 × 10 µm2

size. An overlay error between these overlapping gratings creates a small intensity difference
between the +1st and -1st diffraction order, which scales linearly with overlay. Dark-field
microscopy with high-quality optics is used to create +1st and -1st order images of the metrology
targets on a camera and these images are used to determine overlay (OV). Robustness and
sub-nm accuracy is possible by optimizing the grating etch and using carefully selected multiple
wavelengths [7]. However, the relentless push to follow Moore’s law drives existing optical
overlay metrology to the extreme limits of its possibilities. For example, novel devices and
process flows result in the use of new materials that are only sufficiently transparent at infrared
wavelengths which drives the need for OV metrology tools that cover a larger wavelength range.
In addition, there is a strong push to reduce the size of the metrology targets which requires
improved imaging resolution in OV metrology. On top of this, the diffraction efficiency of overlay
targets continues to decrease to the 0.01 % levels due to thin resist that is used in EUV lithography
and increased light losses in the stack of layers that cover the bottom grating. Last but not least, a
solution for all these challenges needs to be realized at acceptable cost and in a small footprint
since available space for metrology is limited.

We are exploring dark-field digital holographic microscopy (df-DHM), as a DBO metrology
technique that can potentially address these challenges [8]. Our df-DHM uses a supercontinuum
source in combination with an acousto-optical tunable filter (AOTF) as a tunable light source and
a single uncoated aspheric imaging lens which allows imaging over a large wavelength range
since there are no anti-reflecting coatings that limit the usable wavelength range. Moreover, this
results in a compact sensor with a high transmission and at acceptable cost. As an alternative
for a single imaging lens, a catadioptric Schwarzschild objective could be of interest as well
[9]. However, the central obscuration of these objectives limits the freedom in optimizing the
wavelength and pitch of a metrology grating for best accuracy and robustness. This makes
these objectives less preferred for the high-end metrology applications for which our df-DHM is
intended.

However, a single aspheric lens only offers diffraction-limited imaging performance for the
wavelength for which the lens was designed. For other wavelengths large aberrations will
significantly degrade the image quality to levels that are unacceptable for metrology applications.
For example, Fig. 1(b) shows a dark-field image of a grating with a pitch of 400 nm that was
obtained with our single-lens setup using a wavelength of 532 nm and an illumination angle of
incidence of 70◦ (Fig. 1(a)). For these measurement settings, the -1st diffracted order passes
through the edge of the exit pupil where spherical aberration will lead to a serious image
degradation. Figure 1(c) shows the wavefront error in the exit pupil of our lens (Thorlabs
A240TM) which has been calculated with ZEMAX optical design software using nominal lens
design data. The graph shows the Zernike coefficients of this wavefront error where we have
used the fringe-indexing convention (Appendix A). It can be clearly seen that a large 4th order
spherical aberration (Z9) is present that explains the poor imaging quality in Fig. 1(b).

Fortunately, Digital Holographic Microscopy (DHM) is able to correct for these lens aberrations
since a hologram allows us to retrieve the complex field of the aberrated image. This complex field
can then be back-propagated to the exit pupil where we can apply a wavefront error correction.
Calibrating wavefront aberrations in DHM has been a subject of research for many years. It has
been shown that the wavefront errors introduced by a microscope objective and lenses can be
successively removed in DHM [10,11], as well as spherical aberration [12], chromatic aberration
[13], astigmatism [14,15], or anamorphism [16,17]. For the wavefront reconstruction in DHM
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Fig. 1. (a) schematic drawing of a dark field microscope with a 532 nm wavelength and
70◦ illumination angle. (b) dark field image of 400 nm grating pitch targets. (c) Zernike
decomposition for Thorlabs A240TM lens as obtained with ZEMAX for λ = 532 nm and
NA = 0.465.

with a single hologram, an accurate knowledge of setup parameters such as the wavefront shape
of the reference beam and the object-image distance are critical.

The possibility of correcting lens aberrations in digital holography was first outlined by
Stadelmaier and Massig [12]. A pupil-based evaluation of the complex point-spread-function
(PSF) was originally proposed by Charriére et al. [18], where the complex amplitude point-spread
function of a high NA microscope objective was measured with DHM and the retrieved wavefront
error was decomposed in a set of Zernike polynomials. In that work the authors used the fiber tip
of a scanning near field microscope as a point source.

Here we will present aberration calibration and aberration correction for dark-field DHM
by measuring the complex PSF using point scatterers on a flat substrate. In contrast to the
work presented in [18,19] we use a single imaging lens with high aberration levels instead
of a high-quality microscope objective. Moreover, instead of using a strong point source (a
single-mode fiber tip) we use a nanometer-sized scattering structure that has been created on
a bare silicon wafer surface. Such a structure can be reproducibly made in various ways and
allows an easy and fast in-line aberration calibration in DHM-based wafer metrology. The
amount of light that is diffracted from such a small structure is weak, but we will show that
the coherent amplification of the reference wave in DHM still allows wavefront calibrations
with sub-milli-wave repeatability. We will also show that this method is able to calibrate and
correct even very large aberrations in a single lens df-DHM. Finally, our method uses a spherical
reference wave coming from the tip of a single-mode fiber without collimation optics. As a result,
the reference wavefront shape is known with a high degree of accuracy which helps to reduce
wavefront calibration errors.

In the next section we will briefly explain the concept of lens calibration using a point-scatterer
in a single-lens DHM setup. We will show that non-telecentric single-lens imaging allows us
to use a spherical reference wave coming from the tip of a single mode fiber. We will then
present our experimental df-DHM setup followed by a detailed description of the calibration
procedure and the measured wavefront aberrations of our single lens. Section 3 presents results
of lens aberration calibration with a point source and on the correction that has been applied to
highly aberrated images of small grating targets that are used for overlay metrology. Section
4 discusses potential error sources that impact the precision and accuracy of our aberration
calibration method and section 5 concludes the paper with an outline of the following steps that
we plan to take to improve overlay metrology.
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2. Theory

2.1. Imaging model of a single lens digital holographic microscope

Many DHMs create an image of an object with a microscope objective and a tube lens [19,20].
Such a double-telecentric imaging setup introduces no quadratic wavefront curvature in the image
and a collimated off-axis reference beam is used to retrieve the complex image via well-known
Fourier transform techniques. This collimated reference beam is often made with a beam expander
and wavefront errors in this beam expander will impact the retrieved complex image and need to
be compensated.

Fig. 2. Schematic drawing of a single lens holographic imaging system, where do is the
object distance, di is the image distance and f is the focal length of the lens. Red solid lines
indicate the ray tracing of the object beam while blue dotted lines indicate the presence and
orientation of the spherical reference beam.

Alternative designs for DHM use only a microscope objective to produce a magnified image of
an object, which is also equivalent to a lensless holographic setup with an object wave emerging
directly from the magnified image of the specimen and not from the sample itself [21,22]. Usually,
these designs use a lens in the reference beam to produce a spherical reference wave with a
curvature that matches the curvature that is created by the microscope objective. The additional
optical elements on the reference beam path may add undesired wavefront errors that should also
be calibrated.

Our fiber-coupled df-DHM setup, uses a single imaging lens which adds a quadratic wavefront
to the complex image field on the camera. At first sight, this quadratic wavefront may seem
undesired. However, such a wavefront allows the use of a spherical reference wave which can be
created using the tip of a single-mode fiber. This further reduces the required amount of optics
and therefore the number of potential error sources.

Using the plane wave propagation model as described by Goodman in [23] we can show that
the complex field Ei of the image on the camera is given by:

Ei(xi, yi) = ej π
λ(di−f ) (x

2
i +y2

i )
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Here ⊗ denotes a convolution and H(xi, yi) is the Fourier transform of the aperture stop in the
back focal plane of the lens (for the full derivation of Eq. (1) see Appendix B). H is essentially
the complex point-spread-function (PSF) of this single-lens imaging system. Eo(−

xi
M ,− yi

M ) is the
complex field in the object plane and M is the magnification. The quadratic phase term in Eq. (1)
has a radius of curvature di − f where di is the image distance and f is the focal length of the lens.
For clarity, the symbols used in Eq. (1) are also indicated in Fig. 2 which shows the paraxial
single lens imaging along with the reference beam.
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The spherical reference beam Er at the image plane in our df-DHM has a radius of curvature
di − f and its complex amplitude in the image plane is given by:

Er(xi, yi) = Aej π
λ(di−f ) ((xi−Xr)

2+(yi−Yr)
2). (2)

The reference beam, that is propagated from the tip of a fiber, generates spherical waves that
are described with the quadratic phase approximation. The quadratic phase terms in the image
field and the reference beam are identical when the fiber tip is positioned in the pupil plane of the
imaging lens. In this case the coherent sum of the image field and the reference wave yields an
intensity I on the camera:

I(xi, yi) = |Ei |
2 + A2 + Aej 2π
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)︂)︂
+ c.c. (3)

In this expression, the term "c.c." denotes the complex conjugate. The quadratic phase terms
in the image field and the reference beam are eliminated, and the complex field of the image field
can be retrieved with standard Fourier transform techniques.

2.2. Lens calibration and correction with complex point-spread-functions

The usual way to characterize an optical imaging system, is its point-spread function (PSF) which
is an image of a single point source. A point source illuminates the lens aperture with a spherical
wave that is insensitive to non-uniformity in the illumination beam. Without aberrations, the
wavefront in the exit pupil of our df-DHM will be perfectly spherical (Fig. 3), and the point source
will be imaged as a diffraction limited Airy disk. However, lens aberrations will deform the
wavefront (red curve in Fig. 3) and will result in an aberrated Airy disk with enhanced side lobes
and a lower peak intensity. For isoplanatic imaging the PSF is invariant to a shift of the object
and in that case a measurement of the complex PSF at 1 point in the field is sufficient to calibrate
the aberrations in the imaging system. For this assumption to be valid we keep the object in the
center of the field of view (FoV), where any small shifts will not impact the measured wavefront.

Fig. 3. The lens calibration process with a point source. A point-scatterer illuminates the
whole lens aperture. A lens free of aberrations corresponds to a smooth spherical wavefront
and a diffraction limited point-spread function (PSF) on the image plane (shown in (a). A
non-ideal lens will deform the wavefront and will result in an aberrated PSF in the image
plane (shown in (b).

For a point source that is centered in the object plane, we find for the retrieved complex PSF in
the image plane:

PSF(xi, yi) = H(xi, yi) ⊗ δ
(︂
−

xi

M
,−

yi

M

)︂
. (4)

Here, the point source is represented by the Dirac-delta function δ. The complex field can be
computationally back-propagated to the pupil plane using a Fourier transform, which yields:

F {PSF} = |P(xf , yf )|ejW(xf ,yf ). (5)
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Here |P(xf , yf )| represents the amplitude of the field in the exit pupil and W(xf , yf ) represents
the wavefront aberration of the object wave. In general, this wave aberration is field-dependent.
However, non-isoplanatic behavior is usually small for the field sizes that are commonly used in
metrology.

Once the lens aberrations have been calibrated with the method as described above, the
aberration correction in off-axis DHM is quite straightforward. Fourier transforming the camera
image yields the spatial frequency spectrum of the hologram. This consists of a baseband
term and two sidebands. These two sidebands are, respectively, the complex field in the exit
pupil and its complex conjugate. We select the sideband with the complex field in the exit
pupil and we multiply this with the conjugate wavefront error e−jW(xf ,yf ) that we calibrated with
the point-scatterer. Then with a second Fourier transform we obtain an aberration-corrected
amplitude image of the object.

In practice, the object (a metrology target in our case) is often imaged at a different focus
position as the focus position that was used for the aberration calibration. As a result, a (small)
focus correction may be needed as well which is easily realized by adding a focus correction
term to the field in the exit pupil. The lens aberration and focus correction is given by:

F {Efcor (xf , yf )} = F {Ef (xf , yf )}e−jW(xf ,yf )e−jα4Z4(xf ,yf ). (6)

where Efcor (xf , yf ) is the corrected field in the exit pupil, with e−jα4Z4(xf ,yf ) as the focus correction
term. The term α4 represents the amount of defocus and Z4(xf , yf ) is the Zernike polynomial, as
presented in [24]. The polynomial expression of Z4 is given in Table 1 of Appendix A. In the
following section, we apply this concept to df-DHM to obtain the complex amplitude point-spread
function of our imaging system and correct for the aberration introduced by the lens element on
an overlay test target.

3. Experimental results of aberration calibration and correction

3.1. Sample preparation

To test the calibration method that we described in the previous section we created two samples
with well-defined point objects. The first sample is a bare silicon substrate on which we deposited
gold nanoparticles. The nanoparticle solution (A1C-70-CIT-DIH-1-5, Nanopartz) is specified to
contain 75 nm gold cubes with citrate ligands that are dispersed in water. For the preparation
we cast a drop of 20 uL on the silicon and after 30 seconds we rinse with ethanol and dry with
N2 (dinitrogen). The size of the nanoparticles was measured to be approximately 80 nm while
the shape was varied, with spherical, nanorods or other nanoparticles also present. Potential
nanoclusters were also formed at some parts of the sample but for the calibration we used an
isolated gold nanoparticle, like the one that is shown in the scanning electron microscope (SEM)
image on Fig. 4. The second sample was also fabricated on bare silicon, but now a nano-hole
pattern was milled with a 30 keV focused gallium ion beam (FEI Helios Nanolab 600). The ion
beam current was set to 100 pA with a focal spot diameter of 80 nm. The nano-hole array was
milled in 500 cycles and with a dwell time of 1 ms.

3.2. Experimental setup

To demonstrate DHM capability for lens aberration calibration we selected as our imaging lens
an off-the-shelf plano-aspheric lens (Thorlabs A240TM - SL) with an effective focal length of
8 mm and an NA of 0.5. Because of the extreme level of aberrations on the edges of the used
lens, we have selected a digital aperture stop of 0.465. This lens is intended for collimating laser
diode light with a wavelength of 780 nm and cover glass between the laser and the lens. The lens
material was molded glass type D-LAK 6 with a focus shift of 0.35 mm in the visible range. In
our experiment, however, we used a 532 nm wavelength and there was no cover glass present
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Fig. 4. (a) the fiber-coupled df-DHM. An Au nanoparticle of approximately 80 nm size is
illuminated with an oblique illumination beam (R. Arm) of 70◦. The object beam will form
a PSF that is coherently mixed with the reference beam (R. Ref) resulting in a hologram
on image plane. An SEM image of the sample (Au nanoparticle) is shown in the bottom.
(b) the holographic reconstruction process. By Fourier transforming the PSF hologram we
back-propagate to the pupil plane and the angular spectrum. To retrieve the complex field in
the pupil (Eq. (5)), we select one of the sidebands, filter out the other terms and shift it to the
origin of the angular spectrum. The right-hand side graphs show the recovered wavefront
(amplitude and 2π-wrapped phase of the PSF).

between the object and the lens. As a result, we can expect high spherical aberrations that will
result in a severely degraded image of the metrology targets that we are interested in (as already
shown in Fig. 1).

The off-axis df-DHM setup (Fig. 4(a)) uses a fiber coupled Supercontinuum White light source
(LS; Leukos Rock 400 5) combined with an Acousto-Optical Tunable Filter (AOTF; Gooch
& Housego TF550-300-4-6-GH57A). This AOTF device has a bandwidth in the range of 4–7
nm and covers the whole visible wavelength range from 400 to 700 nm. For the majority of
the presented experiments, we have selected an AOTF frequency that corresponds to a 532 nm
wavelength with a bandwidth of 5 nm. We verified the selected wavelength with a bandpass filter
(FLH532-4). A delay line is used to match the optical path of the reference and the illumination
beam and polarization maintaining fibers (PM - Shafter-Kirchhoff PMC-400Si-2.3-NA014) are
used to couple the light from the source path to the sensor head. The sensor head is comprised of
two off-axis illumination arms which illuminate the target from opposite directions at an incident
angle of approximately 70◦ with respect to the normal of the object plane.

For DBO measurements the two sides generate the -1st (L. Arm) and +1st (R. Arm) diffraction
orders. Each illumination arm generates a Gaussian-shaped spot on the object plane (1/e2

diameter approximately 130 µm) with the use of two microscope objectives (FL- 50X Mitutoyo
Plan Apo Infinity Corrected Long WD Objective) and two adjustable mirrors for fine-tuning the
angle of incidence. These objectives give a well-defined illumination spot in the whole visible
range but at the same time negate the compactness of the setup and increase the total cost. We
plan to replace them with small parabolic mirrors that can operate in a broader wavelength range,
combined with an illumination beam characterization. In addition, two corresponding spherical
reference beams are coherently added to the corresponding object beams. The two reference
beams have different azimuthal angles resulting in a different orientation of the sidebands of the
spectra of the resulting holograms. With this approach, two holograms are captured by the image
sensor using only one image acquisition, and the two object fields can be retrieved with only
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three Fast Fourier Transforms (FFTs). Further details of this setup and the parallel acquisition
of multiple holograms are given in [8]. The microscope consists of the single plano-aspheric
Thorlabs lens (SL) and a camera (Basler acA4112-8gm) with a 12 Mpixel CMOS image sensor
with 3.45 µm pixel size. We chose a nominal magnification of 100x by placing our detector 800
mm away from the lens.

3.3. Aberration calibration in dark-field digital holographic microscopy

For calibrating the lens aberration, we used only one of the illumination beams and the
corresponding reference beam (R.arm and R.ref in Fig. 4). The illuminated sample contains
either gold nanoparticles or nanoholes and light that is scattered from these structures is captured
by the lens and creates an aberrated PSF on the camera. This aberrated PSF is coherently mixed
with the spherical reference beam and the resulting hologram is used to retrieve the complex PSF.
Figure 4(b) shows some of the images in the various steps of the retrieval of the complex PSF
and the complex field in the exit pupil.

With df-DHM we obtain the hologram of the PSF and by Fourier transforming we move to the
spatial frequency domain (angular spectrum) where the cross-correlation or interference terms of
Eq. (3) are fully separated from the baseband. To retrieve the amplitude and the phase of the PSF,
using the angular spectrum method that was first outlined by E. Leith and J. Upatnieks [25], we
select the sideband that corresponds to the 3rd term of Eq. (3) (top right sideband), filter out the
other terms and shift this sideband to the origin of the angular spectrum.This yields the complex
field in the exit pupil (Eq. (5)). We could retrieve the PSF in the image plane (Eq. (4)) with an
additional FFT, but this is not required for the aberration calibration.

In order to verify our results with ZEMAX, we decompose the wavefront aberrations of
the imaging lens into Zernike polynomials [26–28]. ZEMAX simulations generates Zernike
coefficients using the fringe-indexing convention [24] which is commonly used by lens designers
[29]. More details about Zernike polynomials are summarized in Appendix A.

The wavefront error of the pupil that we recovered with our calibration method, contains 2π
phase wrapping errors because of the large spherical aberrations of our lens. This is of no concern
for aberration correction as the wrapped phase distribution can be directly used. However in order
to quantify the aberrations by a Zernike decomposition, we must apply a 2D phase unwrapping
algorithm to the measured wavefront error. The absolute deformation of the phase front can now
be decomposed in Zernike polynomials. Figure 5 shows the unwrapped wavefront errors for the
two measured samples and a first comparison of the measurements and the ZEMAX prediction
in terms of Zernike coefficients.

For this first comparison in Fig. 5 we present the measured wavefront errors of the gold
nanoparticle (PSF 1) and the FIB-sample (PSF 2). Using the same color-scale the two wavefronts
look almost identical with a small asymmetry on the wavefront error distribution. On the Zernike
decomposition of the wavefronts (Fig. 5(a)), it is shown that the two samples are in quite good
agreement. Almost all the Zernike coefficients follow the same trend with Z9 coefficients with
only 3 milli-waves difference. The only significant deviation between the two samples is on Z5
(astigmatism) where we measured a 0.12 waves difference. We are still investigating the main
cause for this deviation.

Figure 5(a) also shows the Zernike decomposition of the ZEMAX wavefront. The observed
differences between the measured wavefront and the ZEMAX wavefront are due to a combination
of lens manufacturing tolerances and residual measurement errors in our setup. The lens in our
setup is mass-produced and the tolerance data of this lens are not available but are expected to be
significant. In our setup we have also identified a few small error sources that we will discuss in
section 4. We also measured the repeatability of the retrieved Zernike coefficients. For each of
the two nano-scatterers we acquired 20 holograms under the same conditions and the measured
reproducibility of the dominant spherical aberration Z9 is shown in Fig. 5(b). Despite the small
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Fig. 5. (a) Zernike decomposition of measured wavefront errors for two different samples
along with simulated data as predicted with ZEMAX optical design software (blue bars).
PSF 1 (red bars) is the gold nanoparticle and PSF 2 (green bars) is the FIB-sample. The
results were obtained for λ = 532 nm and NA = 0.465. (b) Repeatability measurements of
the Z9 aberration of the measured PSFs.

amount of light scattering, we found a standard deviation of only 0.3 milli-waves for PSF 1 and
0.7 milli-waves for PSF 2.

We also performed a wavefront measurement through focus, and we compared the retrieved
Zernike polynomial Z4, that correspond to defocus, with the amount of Z4 that was expected for
this lens. Figure 6(a) shows the comparison of the measured data and the expected behavior.
These results were obtained by measuring the PSFs for various focus positions. For PSF1 1 µm
steps from -6 µm up to +6 µm defocus were obtained along with two more measurements in the
extreme cases of ±10 µm defocus. For PSF2 since the signal for the nanohole array was weaker
we limit the measurements to 2 µm steps and align the measured Z4 with the data for PSF1. As a
result, for the second sample the defocus range was from -9 µm up to 5 µm. For larger positive
defocus the visibility of the PSF2 was low and we could not complete the measurement. The
two sets of measured data change linearly through focus with almost the same slope and with R2

values of almost unity. There is a small offset in the measured graphs compared to the calculated
graphs of approximately 2 µm which can be explained by the fact that the depth-of-focus (DoF)
scales with λ/NA2 which in our case yields a DoF of approximately 2 µm and the best focus
position of the measured PSFs was done manually.

Since we ultimately also plan to use our DHM setup over a large wavelength range, we also
measured how the amount of spherical aberration Z9 varies over the wavelength range that we
could cover with the AOTF that we currently have in our setup. Figure 6(b) shows the measured
through-wavelength Z9 variation for the gold nanoparticle sample (red dots) and the nanohole
sample (green dots), along with the variation predicted by ZEMAX (blue dotted line). It can be
seen that our measured wavelength variation is consistent with the behavior that we expect from
the dispersive nature of the lens material. Moreover, we also see that our measurement results are
in agreement with the ZEMAX calculations. The discrepancy between ZEMAX calculations and
measured data can be explained by some uncertainty in the actual wavelength of our AOTF and
some uncertainty in the actual NA that was used in the ZEMAX calculation. The AOTF drifts
over time and can correspond to an uncertainty on the selected wavelength that deviates from 1-2
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nm to 5-10 nm in the whole visible range. At the same time, due to numerical approximations,
we estimated an uncertainty of 10−3 on the NA that was used in the ZEMAX calculations.

Fig. 6. (a) through focus comparison of the measured PSFs and the predicted slope from
ZEMAX. Red squares are the data points of the gold nanoparticle fitted with a red dashed
line while the green circles are the data points for the nanohole fitted with a green dotted line.
The blue dash-dotted line is the Z4 slope predicted by a ZEMAX calculation. (b) through
wavelength variation of Z9 of the measured PSFs and the predicted slope from ZEMAX. Red
squares are the data points of the gold nanoparticle with error bars indicating an uncertainty
of about 15 milli-waves while the green circles are the data points for the nanohole with
uncertainty of about 25 milli-waves. The blue dashed line is the Z9 slope that was calculated
with ZEMAX.

In the following subsection we use the calibrated wavefront errors to correct for the lens
aberrations and we will show how this improves the imaging of grating targets that are used for
OV metrology.

3.4. Aberration correction in dark-field digital holographic microscopy

The df-DHM setup is intended to be used for diffraction-based Overlay metrology on multiple
grating targets. To test the aberration correction capabilities of our df-DHM we use a test wafer
with overlay targets of small overlapping gratings. The gratings in the bottom layers are etched
in a silicon wafer and have an etch depth of about 90 nm. The gratings in the top layer are
lithographically made in a resist film with a thickness of about 90 nm. The size of these square
gratings varies, and in this experiment, we will focus on gratings of 10 × 10 µm2, 8 × 8 µm2 and
5 × 5 µm2 size and a pitch of 400 nm. This pitch in combination with the used wavelength of 532
nm will result in highly aberrated images since the ±1st diffraction orders are at the edge of the
lens aperture where the impact of aberrations is highly visible, as already shown in Fig. 1.

In these measurements we used the left illumination pair (L. Arm) to generate the -1st diffraction
order and the right illumination pair (R. Arm) to generate the +1st diffraction order as shown in
Fig. 4. The two holograms were measured in parallel, as explained in [8]. For the calibration
the nano-scatterers were also placed at the center of the field of view (FoV). Figure 7 shows the
aberration correction process for the image that is formed by the -1st diffraction order.

Figure 7 shows the impact of lens aberrations on the quality of a retrieved image of an overlay
target. The highly aberrated image of the targets with a 400 nm grating pitch can significantly
affect the overlay measurements since there is not a well-defined target area to measure the total
amount of light that is diffracted in the -1st order. Moreover, in real production wafers an overlay
target is normally surrounded by patterns and the aberrations would cause a large amount of
optical crosstalk from the surrounding patterns into the target area. The correction of the retrieved
aberrated image of the -1st diffraction order is shown in Fig. 7. As described in section 2.2, the
complex field Ef in the pupil is multiplied by the conjugate wavefront aberration e−jW(xf ,yf ) that
we obtained in the calibration step. For the correction of the two diffraction orders the same error
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Fig. 7. The aberration correction process for the -1st diffraction order, A retrieved -1st

order amplitude of OV targets with df-DHM, Ei(xi, yi) is back-propagated to the pupil. In
pupil plane we select the cross-correlation term of the -1st order Ef (xf , yf ) and we filter out
the remaining signals. We then multiply the complex field with the phase of the retrieved
wavefront error from the calibration e−jW(xf ,yf ) and the focus correction term e−jα4Z4 . With
an additional FFT the corrected image is obtained E0(xi, yi). (a) A close look on the -1st

intensity of a highly aberrated target with grating pitch of 400 nm and 8 × 8 µm2 size. (b) a
close look of the corrected -1st intensity image of the same target.

Fig. 8. The aberration correction process for the +1st diffraction order, A retrieved +1st

order amplitude of OV targets with df-DHM, Ei(xi, yi) is back-propagated to the pupil. In
pupil plane we select the cross-correlation term of the +1st order Ef (xf , yf ) and we filter out
the remaining signals. We then multiply the complex field with the phase of the retrieved
wavefront error from the calibration e−jW(xf ,yf ) and the focus correction term e−jα4Z4 . With
an additional FFT the corrected image is obtained E0(xi, yi). (a) A close look on the +1st

intensity of a highly aberrated target with grating pitch of 400 nm and 8 × 8 µm2 size. (b) a
close look of the corrected +1st intensity image of the same target.
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phase mask was used. Moreover, an additional focus correction e−jα4Z4(xf ,yf ) was also applied
since the gold nanoparticle was measured at a (slightly) different focus than the grating sample.

Figure 8 shows the aberration correction of the retrieved df-image for the +1st diffraction
order. The correction steps are the same. We are using the same raw hologram from which we
reconstruct the raw df-images. For the correction we apply the same wavefront error phase mask
and with an additional FFT we obtain the corrected df-image for the +1st diffraction order.

As shown in Fig. 7 and Fig. 8, the -1st and +1st order images of the 400 nm test grating are now
nicely corrected resulting in a vast improvement in sharpness. Even an incidental dust particle
located on the left of the first grating is now sharply imaged. This significant improvement in
image quality will improve metrology performance since the target area is now very localized
and well-defined. Moreover, it is expected that crosstalk from surrounding patterns will also
be significantly reduced. Before concluding this section, it is important to emphasize that
our aberration correction in the exit pupil implicitly assumes that the aberrations are the same
for every position in the field. This assumption cannot be generally made. However, for OV
metrology we focus on an area of approximately 100 µm2 and within this region we can assume
that the aberrations are the same.

4. Potential error sources in our calibration method

In the previous section we showed that our calibration and correction method significantly
improves image quality even in the presence of large aberrations. In this section we will have a
closer look at some items that must be considered for the best possible aberration calibration and
correction result:

1. size of the selected PSF

2. amplitude inhomogeneity of the reference beam

3. decentering of the virtual field Ef in the exit pupil

4. longitudinal position errors of the reference fiber tip
The first 2 items generally result in very small calibration errors that will impact the quality of

aberration correction, so it is imperative to keep them at the milli-wave level. Items 3 and 4 can
lead to a significant error in the calibrated wavefront but these errors also occur in the imaging of
the metrology target so they will effectively cancel in the aberration correction.

4.1. Size of the selected PSF

The PSF of an aberrated coherent imaging system generally contains many diffraction rings
around the central peak. In practice, however, we can only select a finite part of the PSF in a
digital hologram. In that case the measured PSF (PSFmeas) can be written as the multiplication
of the real PSF (PSFreal) and a (rotationally symmetric) window function AW :

PSFmeas(xi, yi) = PSFreal(xi, yi) ∗ AW (xi, yi). (7)

This windowing operation results in a low-pass filtering of the field in the exit pupil since this
field will be convolved with the Fourier transform of AW .This convolution will smoothen steep
wavefront variations in the exit pupil so it will result in measured aberrations that are less than the
actual aberration. This is clearly visible in Figs. 9(a) and 9(b) which shows the retrieved 4th-order
spherical aberration (Z9) of our lens as function of diameter of the circular window AW . For the
calibration and correction of the overlay targets that we reported in the previous sections we used
a circular window with a diameter of 40 µm (indicated with the dashed line in Fig. 9(c)). This
window diameter offers a consistency on the measured Z9 for both samples as many diffraction
rings are included and at the same time potential interference from the surroundings is also
minimized.
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Fig. 9. (a) The retrieved wavefront of a measured PSF that is multiplied by a 8 µm size
window. (b) the retrieved wavefront of the same PSF multiplied with a 40 µm window. (c)
Measurement variation of Z9, spherical aberration of the 2 PSF for different window filtering
size that ranges from 1 µm up to 70 µm.

4.2. Amplitude inhomogeneity of the spherical reference beam

In the df-DHM setup (Fig. 4(a)) we use the tip of single mode fiber to generate a well-defined
spherical reference wave. To redirect the reference beam to the camera we use a standard half-inch
mirror. This additional mirror surface can introduce some micro speckle to the reference beam
due to the roughness of the mirror. Moreover, the mirror surface can potentially be degraded
over time. The rate of degradation of the coating of the mirror depends on the way the mirror
was stored, the humidity and the air flow which can potentially add dust particles in the mirror
surface. All these factors can potentially affect the amplitude homogeneity of the reference beam
and introduce a small amount of speckle noise in the reference beam.

This speckle noise leads to small amplitude inhomogeneities on the reference beam which
affect the retrieval of the complex PSF. This introduces calibration errors on the wavefront
measurements, and we need to be sure that the impact on the lens calibration is sufficiently
small. To see the impact of the amplitude inhomogeneity we used a first order approximation to
correct the hologram from spatial amplitude variations in the reference beam using the following
equation:

Scorr =
SDHM − SREF

√
SREF

. (8)

Here SDHM is the acquired digitized camera image of the measured hologram and SREF is
the acquired digitized camera image of the measured reference beam. After averaging out the
reference beam on a measured hologram we compared the retrieved Zernike coefficients between
the raw PSF and the corrected PSF. Figure 10(a) presents the measured intensity of the reference
beam where the amplitude inhomogeneities are visible. The inset shows an enhanced contrast
image of the speckle noise in a region of interest of about 3.5x1.4 mm2 at camera level. The
relative signal variation in this region was measured to be 2.5% which can be further reduced
by using a better-quality mirror. Figure 10(b) presents the Zernike decomposition of the same
sample (PSF 1) when the raw measured hologram (Raw PSF) was used compared to the measured
hologram after calibrating for the speckle noise of the reference beam using Eq. (8). (Corrected
PSF).

As shown in Fig. 10(b), there is a very good correlation between the two wavefronts with
Zernike coefficients difference △Zern.Coeff less than 1 milli-wave. This shows that the amplitude
inhomogeneity of the reference beam in our experimental setup has a minimum effect on the
measured wavefronts and the assumption that we made in section 2.1 is valid.
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Fig. 10. (a) The measured intensity of the reference beam and a close look on a region of
interest with relative speckle noise of 2.5%. (b) the Zernike decomposition of the retrieved
wavefronts of the PSF in the two cases along with the difference of the Zernike Coefficients
(∆Zern.Coeff .) of the two wavefronts in milli-waves.

4.3. Decentering of the virtual field Ef in the exit pupil

In the holographic image retrieval, the hologram is initially transformed from the image plane to
the pupil plane with a Fourier transform to uncover the baseband signal and the four sideband
signals. To retrieve a complex image, we shift the proper sideband term to the origin of the
angular spectrum and multiply this with a pupil window (dashed circle in Fig. 11(a)) with a radius
that is equal to the NA of the imaging lens. In practice a small offset s⃗ of the shifted sideband
can occur as shown in Fig. 11(a). This will result in a small amount of pupil decentering that
lead to small wavefront calibration errors.

Fig. 11. (a) Schematic drawing of decentering of the exit pupil. (b) Effect of the decentered
pupil to coma Z7. ∆⃗s is the shift in k space and is equal to λ/FoV.

Figure 11 shows a schematic drawing of the pupil after shifting to the origin of NA space and
windowing. In this particular case the window defines the NA stop and blocks all signals outside
the sideband. A small error shift s⃗ will slightly de-center the sideband and introduce wavefront
aberrations in a manner that is somewhat similar to additional wavefront aberrations that are
introduced by an aperture stop shift as reported in chapter 10 of [27]. For a small shift error and
a sufficiently smooth wavefront we can approximate the wavefront of the shifted sideband by a
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Taylor expansion:
W(k⃗ + s⃗) = W(k⃗) + ∇W · s⃗. (9)

Here ∇W denotes the gradient of the wavefront W. A large 4th order spherical aberration
(Z9) in combination with a shift s⃗ (in either kx or ky) shows up as, respectively X-coma (Z7) and
Y-coma (Z8). To show this effect we start with the wavefront error of Z9:

W9 = α9(6ρ4 − 6ρ2 + 1). (10)

Here α9 represents the amount of spherical aberration Z9 which is multiplied with the Zernike
polynomial, expressed in waves and ρ =

√︂
ρx2 + ρy2 is the normalized radial pupil position. A

small shift in △ρx results in a new wavefront W9,△:

W9,△ = W9 +
dW9
dρ

dρ
dρx

△ρx. (11)

Evaluating the 2nd term shows that the shifted wavefront introduces X-coma and a tilt in
x-direction:

W9,△ = W9 + △ρxZ9(24ρ3 − 12ρ) cos ϕ. (12)

The 3rd order coma is described by the Zernike polynomial W7 = α7(3ρ3 − 2ρ) cos ϕ (see
Appendix A). So the small shift △ρx introduces a coma increment with a △Z7 given by:

△Z7 = 8α9
△kx

NAobj
. (13)

Here NAobj is the edge of the objective’s NA. This analysis shows that a small shift error
only becomes significant for lenses with large spherical aberrations that we have in our setup.
Fortunately, this shift error also occurs in the imaging of the metrology target so residual
wavefront calibration errors will effectively drop out in the aberration correction.

Figure 11(b) shows the effect of small decentering errors. In this numerical experiment we
have deliberately introduced a shift in the kx direction in the range about -0.02 to +0.02 in k-space.
It can be clearly seen that the retrieved amount of X-coma varies linearly with the amount of shift.

4.4. Longitudinal position errors of the reference fiber tip

In section 2.1 we presented the single lens DHM where the fiber tip of the reference beam is
located in the pupil plane as shown in Fig. 2. In DHM the Z-position of the reference beam
defines the Z-location of the Fourier plane where we have the virtual NA stop. However, in
practice small longitudinal position errors of the reference fiber tip can occur that result in a
mismatch between the Z-location of the virtual Fourier plane and the actual exit pupil of the
imaging lens. Here we will show that this results in additional field-dependent coma. The cause
of this field-dependent coma is similar to the effect that we described in the previous section
and is further clarified in Fig. 12(a). An off-axis position of the point-scatterer will result in a
tilted wavefront behind the lens. This tilt in combination with a Z-offset of the virtual aperture
will introduce additional coma that scales linearly with field position of the nano-scatterer. On
Fig. 12(a) an over-exaggerating drawing is used to highlight the impact of these position errors.

We estimated the longitudinal position error dfx of the reference fiber tip in our setup to be
approximately 15 mm, as shown in Fig. 12(a). To evaluate the effect of this position error, we
measured the wavefront error as function of x-position of the gold nanoparticle. We determined
the X-coma (Z7) and plotted the measured Z7 as function of x-position in the field. The result is
shown in Fig. 12(b) along with the ZEMAX calculation that was done for an aperture stop that
was 15 mm away from the exit pupil. The bottom graph of Fig. 12(b) represents the deviation
from a straight line of the measured data.
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Fig. 12. (a) schematic drawing of the measured distances in the setup, dx is the field position
variation and dfx is the longitudinal error shift of the reference fiber tip. (b)(Top) Through
field comparison of the measured PSF and the predicted slope from ZEMAX. Red dots are
the data points of the gold nanoparticle fitted with a dashed line while the solid blue line is
the expected Z7 slope by ZEMAX. (Bottom) the deviation of the measured data from the
fitted line.

We observe that our measured data is in good agreement with the ZEMAX calculations.
The small difference in the slope can be caused by a residual measurement error of the fiber
Z-position. The offset of the measured coma may be real or due to a small offset of the virtual
aperture as explained in the previous section. The deviation of the measured coma as function
of field position from the expected linear behavior is on average below 1 milli-wave which
demonstrates the capability of achieving milli-wave calibration precision using weakly scattering
nanostructures.

The field-dependent coma that is introduced by a reference fiber Z-misalignment results in
non-isoplanatic imaging where aberration cannot be efficiently corrected. It is therefore essential
that the fiber tip is placed as closely as possible to the exit pupil. We checked with ZEMAX that
this indeed resulted in a negligibly small field-dependent coma for our Thorlabs lens.

5. Conclusion

We have demonstrated a robust method for measuring aberrations and correcting the aberrated
images in a df-DHM. We presented measured data that shows that weak point scatterers are very
suitable for calibrating large wavefront aberrations in Digital Holographic Microscopy. Although
our setup still contained some imperfections like a longitudinal offset of the reference fiber, we
have been able to show convincing data of the aberration correction capabilities of our technique.
Uncorrected images of metrology targets on a test wafer looked severely distorted but this image
quality dramatically improved after applying an aberration correction.

The measured data that we have shown has been measured at only 1 wavelength, but this
calibration method is expected to perform well over a wide wavelength range. At longer
wavelengths the amount of light that is scattered by a point-scatterer will be significantly reduced.
However, since we use an AOTF as a wavelength tuning device the bandwidth of the measurement
light will also go up which results in higher intensity levels of the illumination beam. Moreover,
the noise in the measured wavefront is in the sub-milli-wave level and is still well below the few
milli-wave level that we need.

The wavefront errors measured with a nanohole and a gold nanoparticle were very similar, but
we did observe a small (≈ λ/10) but significant difference in astigmatism (Z5). One possible cause
might be the actual shape of the gold nanoparticle. It provides stronger signals but poor control of
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the particle shape. The nanohole sample made with the focused ion beam milling tool combined
with scanning electron microscopy (FIB-SEM) on the other hand offers excellent control on
the nanohole dimensions but the scattering is weaker. Given the already good reproducibility
performance we believe that a FIB-SEM -created nanohole target is the better option for further
experiment and we plan to explore this in more detail.

The measurement data in section 4.4 have shown that a longitudinal offset of the reference
fiber tip creates a position dependent coma that varies linearly in the field. This will lead to
non-isoplanatic imaging conditions that limits the aberration correction capabilities to a small
field of view. However, we plan to fix this longitudinal offset and ZEMAX simulations show
that this will significantly increase the field size over which we can computationally correct for
aberrations.

The results presented here are a stepping-stone towards the next step in this investigation. Now
that we can correct aberrations, we can start exploring the overlay metrology capability of our
DHM concept in the case when the metrology targets are surrounded by other structures. The broad
point-spread-function (PSF) in the presence of aberrations will lead to severe optical crosstalk
from the surrounding structures to the metrology target and degrade metrology performance.
The excellent aberration correction capabilities that we have demonstrated here are expected to
significantly reduce this optical crosstalk error. Demonstrating and quantifying this improvement
will be the next step in this investigation.

Appendix A. Zernike coefficients

Zernike polynomials are a mathematical description of a 3D wavefront deviation from a plane
wave. Every surface deviation is described by a set of circular symmetrical orthogonal basis
functions defined over a unit circle. By this scheme the Zernike Polynomials are defined as:

Z±m
n = Zj = Rm

n (ρ)

{︄
cos mϕfor + m
sin mϕfor − m

, (14)

where m is a positive or zero integer, and Rm
n (ρ) is the radial factor given by

Rm
n (ρ) =

(n−m)/2∑︂
s=0

(−1)s(n − s)!
s!( n+m

2 − s)!( n−m
2 − s)!

ρn−2s. (15)

The norm of a Zernike polynomial is then given by

Nnm = |Z±m
n (ρ, ϕ)|2 =

∫ 2π

0

∫ 1

0
Z±m

n (ρ, ϕ)Z±m
n (ρ, ϕ)ρdρdϕ =

π(1 + δ0m)

2(n + 1)
. (16)

This norm, however, is not used by programs like ZEMAX. The following table, Table 1, provides
a list of the first 16 Zernike polynomials to be used in the wavefront aberration function expansion
in both standard and Fringe notation. These polynomials are commonly used for wavefront
calibration since they are well adapted to accurately describe the phase aberrations in the pupil
aberration function.
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Table 1. The first 16 Zernike polynomials as a function of (ρ,φ).

Fringe notation Standard Notation Zernike Polynomial Description

Z1(ρ,φ) Z0
0 (ρ,φ) 1 piston

Z2(ρ,φ) Z1
1 (ρ,φ) ρ cosφ tilt

Z3(ρ,φ) Z−1
1 (ρ,φ) ρ sinφ tilt

Z4(ρ,φ) Z0
2 (ρ,φ) 2ρ2 − 1 focus

Z5(ρ,φ) Z2
2 (ρ,φ) ρ2 cos 2φ astigmatism

Z6(ρ,φ) Z−2
2 (ρ,φ) ρ2 sin 2φ astigmatism

Z7(ρ,φ) Z1
3 (ρ,φ) (3ρ3 − 2ρ) cosφ coma

Z8(ρ,φ) Z−1
3 (ρ,φ) (3ρ3 − 2ρ) sinφ coma

Z9(ρ,φ) Z0
4 (ρ,φ) 6ρ4 − 6ρ2 + 1 spherical

Z10(ρ,φ) Z3
3 (ρ,φ) ρ3 cos 3φ trefoil

Z11(ρ,φ) Z−3
3 (ρ,φ) ρ3 sin 3φ trefoil

Z12(ρ,φ) Z2
4 (ρ,φ) (4ρ4 − 3ρ2) cos 2φ oblique spherical

Z13(ρ,φ) Z−2
4 (ρ,φ) (4ρ4 − 3ρ2) sin 2φ oblique spherical

Z14(ρ,φ) Z1
5 (ρ,φ) (10ρ5 − 12ρ3 + 3ρ) cosφ 5th order coma

Z15(ρ,φ) Z−1
5 (ρ,φ) (10ρ5 − 12ρ3 + 3ρ) sinφ 5th order coma

Z16(ρ,φ) Z0
6 (ρ,φ) 20ρ6 − 30ρ4 + 12ρ2 − 1 spherical

Appendix B. Derivation of Eq. (1)

We derive Eq. (1) in a two-step process:

1. we first calculate the field Ef in the back focal plane of the lens

2. we then obtain the field Ei the image plane by propagating the field Ef to the image plane
using the Fresnel approximation as outlined in chapter 4 of [23].

According to Eq. (6–25) in [23] the complex field Ef in the back focal plane of the lens is
given by:

Ef (xf , yf ) = P(xf , yf )

∬ ∞

−∞

Eo(xo, yo)e−j 2π
λf (xoxf+yoyf )dxodyo. (17)

Where P is a quadratic phase term given by:

P(xf , yf ) =
A(xf , yf )

jλf
e−j π

λf

(︂
do
f −1

)︂
(x2

f +y2
f ). (18)

Here A denotes the aperture stop in the back focal plane. Assuming Fresnel diffraction we can
write for the the field Ei at a distance di from the lens is:

Ei(xi, yi) = e−j π
λ(di−f ) (x

2
i +y2

i )
∬ ∞

−∞

Ef (xf , yf )G(xf , yf )e
−j 2π

λ(di−f ) (xf xi+yf yi)dxf dyf . (19)

where G is a quadratic phase term given by:

G(xf , yf ) = ej π
λ(di−f ) (x

2
f +y2

f ). (20)

We now use the paraxial imaging condition 1/do + 1/di = 1/f and the magnification M = di/do
and substitute Eq. (17) in Eq. (19). This yields Eq. (1):

Ei(xi, yi) = ej π
λ(di−f ) (x

2
i +y2

i )
(︂
H(xi, yi) ⊗ Eo

(︂
−

xi

M
,−

yi

M

)︂)︂
. (21)
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where H is the Fourier transform of the aperture stop A:

Hi(xi, yi) =

∬ ∞

−∞

A(xf , yf )e
−j 2π

λ(di−f ) (xf xi+yf yi)dxf dyf . (22)
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