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Abstract: Glass fibers are miniature optical components that serve as ultra-narrow endoscopy
probes. Ideally, one would want to perform imaging through a fiber at the highest achievable
resolution and speed. State-of-the-art super-resolution techniques have shattered the diffraction
limit, but more than twofold improvement requires fluorescent labeling and a long acquisition
time. Moreover, it is challenging to implement super-resolution microscopy in a fiber format.
Here we present fiber-based label-free video-rate imaging at more than 2-fold higher resolution
than the diffraction limit. Our work paves the way to rapid, sub-wavelength endo-microscopy in
unlabeled live specimens.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical microscopy is an essential tool in various fields of science and technology. For a long
time, far-field optical imaging was held back by the Abbe limit: the resolution is confined by
λ/(2NA), where λ is the wavelength of light and NA is the numerical aperture of the optical
system [1]. The diffraction limit has been bypassed by the help of fluorescent molecules [2].
Many biological discoveries would not have been possible without super-resolution techniques,
such as stimulated emission-depletion microscopy (STED) [3], photoactivation localization
microscopy (PALM) [4] and stochastic optical reconstruction microscopy (STORM) [5].

Nowadays, optical nanoscopy is widely used worldwide. However, to significantly (more than
twice) overcome the diffraction limit, a specific fluorescent labeling is required [6]. Moreover,
the acquisition speed of super-resolution microscopy is rather slow. For a 40 × 40 µm2 image, the
acquisition time varies from several seconds per frame for STED and confocal microscopies to
several minutes per frame for single-molecule localization methods [7,8]. Fluorescent labelling
is not always possible, because it can change the sample properties or even have a destructive
influence. The important application area where additional fluorescent markers are not desirable
includes wafer defect inspection. Microcracks reduce the fracture strength of Si wafers and lead to
wafer breakage during manufacturing, which reduces manufacturing yield. The microcracks can
be detected by near-infrared-bright-field imaging [9]. However near-infrared cameras are costly
and require temperature stabilization [10]. There is still a high demand for a fast super-resolution
technique that does not rely on fluorescent labeling.

The endoscopic probe is often put inside the region of interest to overcome the limitations
posed by scattering of light in the tissues [11]. To make the imaging process minimally invasive,
the probe should be as compact as possible. Multimode fibers (MMFs) – miniature flexible
optical waveguides that can carry thousands of modes – have a massive potential in endoscopic
imaging [12]. Recently, compressive imaging through a MMF has been introduced [13]. Multiple
speckle patterns generated in a MMF are projected on the sample and a bucket detector records
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the fluorescence intensity. The sparsity constraint allows the sample to be computationally
reconstructed from a small set of speckle patterns combined with the fluorescent signal [14]. The
robustness of the approach to fiber bending was demonstrated [15]. The method can be merged
with acoustic imaging to successfully produce a hybrid technique that permits imaging with two
contrast mechanisms of fluorescence and nonradiative absorption [16].

Here we demonstrate the new method of label-free MMF-based compressive imaging (MMFCI).
The advantages of MMFCI over ghost imaging and conventional raster-scan microscopy has been
demonstrated by imaging with a spatial resolution 2.5 times better than the diffraction limit at a
speed of 5 fps (for 400 × 400-pixel frame) without any fluorescent labeling. Imaging speed up to
250 fps can be easily achieved by implementing fast beam scanning system, such as acousto-optic
deflectors. The MMFCI approach is different from traditional methods of MMF imaging, where
fields on the fiber output facet are pre-optimized to take the form of diffraction-limited foci and
the number of single-pixel measurements is equal to the number of pixels in the final image. In
contrast, in MMFCI, the computationally reconstructed image of a sample contains much more
pixels than the number of single-pixel measurements.

Fiber-format and demonstrated long-term stability of our approach preface rapid, sub-
wavelength endo-microscopy in unlabelled live specimens.

2. Materials and methods

2.1. MMF-based compressive imaging

In MMFCI, the process of projecting different speckle patterns and measuring the transmitted
intensity can be formulated as the following linear problem

Ax = y + n, (1)

where A is the measurement matrix (M × N2), x is the sample vector (N2 × 1) and y is the
measurement result (M×1), N2 is the total number of pixels, M is the number of measurements, n
is noise. Fig. 1(a) shows the experimental setup and Fig. 1(b) represents the simplified procedure
of MMFCI. Speckle patterns from a MMF are sequentially projected on a sample while a
single-pixel detector records total transmitted intensities. One measurement event includes the
projection of a single speckle pattern and recording the total signal from a sample. To construct
measurement matrix A, each N × N illumination pattern from the MMF, Ii(x, y), (x, y are the
transverse coordinates) recorded by the camera was transformed into a 1×N2 vector. The vectors
were stacked one by one to form measurement matrix A. The signal from the sample recorded
with a single-pixel detector forms measurement vector y. The sample image is reconstructed by
solving a linear problem Eq. (1). Original sample x and noise n are unknown.

The problem is ill-posed: in the case of M ≪ N2, there are multiple x that satisfy Eq. (1).
However a prior information about x can be used to solve Eq. (1) exactly [17]. Compressive
sensing uses a sparsity constraint – the knowledge that in some domain x contains a lot of zeros.
Sparsity helps to solve the problem by:

min | |x| |1 subject to Ax = y + n (2)

where | |.| |1 is the l1 norm defined as | |x| |1 =
∑︁

i |xi |. Several well-developed algorithms provide
robust l1-norm minimisation [18]. Taking into account noise in the measurement system the
optimisation problem can be formulated as:

min
1
2
| |y − Ax| |2 + τ | |x| |1, (3)

where | |.| |2 denotes the Euclidian norm and τ ≥ 0 is the nonnegative parameter.
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Fig. 1. (a) Schematic image of the experimental setup. MMF, multimode fiber; BS, beam-
splitter; APD, avalanche photodiode, HWP, half-waveplate, PBS, polarizing beamsplitter.
The sample was illuminated with various speckle patterns and the corresponding transmitted
intensity was recorded by the avalanche photodiode. The camera records the illumina-
tion speckle patterns. (b) Schematic representation of multimode-fiber-based compressive
imaging. Measured speckle patterns form measurement matrix A, recorded transmitted
intensity forms measurement vector y. The number of measurement is equal to the number
of projected speckle patterns.The sample image is computationally reconstructed by solving
the problem Ax=y+n, where x is a sample image flattened into 1D vector,n is a noise in a
measurement system. (c) Geometrical parameters of the samples normalized by the 54×
magnified diffraction limit of the MMF ddiffr. All sizes are in normalized units

A gradient projection for sparse reconstruction (GPSR) algorithm solves Eq. (3) by the quadratic
reformulation [18]. The advantage is that the l1 norm is replaced by a linear function (functional),
making the objective function smooth. Therefore the gradient method of minimization can be
applied. For multimode-fiber-based imaging, we used the GPSR algorithm MATLAB code
developed for compressed sensing and other inverse problems in signal processing and statistics
[19]. Reconstructed vector x (N2 × 1) was transformed into N × N sample image O(x, y).

2.2. Ghost imaging

Ghost imaging uses the same measurement procedure as described by Eq. (1): different speckle
patterns are projected on the sample, and the transmitted intensity is recorded. Sample image
O(x, y) is obtained by correlating the transmitted intensity with the corresponding illumination
pattern intensity distribution [20]:

O(x, y) =
1
M

M∑︂
i=1

(yi − <y>)Ii(x, y), (4)
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Signal-to-noise ratio (SNR) of ghost imaging scales as the square root of the number of
realizations, and in practise M ≫ N2 patterns are required to achieve SNR≫ 1 [20]. The spatial
resolution of the system is bound by the diffraction limit [21]. For reconstruction by ghost
imaging, we used the same experimental data as for MMFCI.

2.3. Diffraction-limited raster-scan imaging

Conventional raster-scan imaging was simulated by taking into account the theoretical diffraction
limit of the MMF and the known geometrical dimensions of the samples. To obtain O(x, y),
ground truth image S(x, y) was filtered in Fourier domain with the 2D incoherent optical transfer
function [1]:

O(x, y) = S(x, y) ∗ PSF(x, y) = |F−1 (︁SF (νx, νy) OTF(νx, νy)
)︁
|, (5)

where S(x, y) is the ground-truth image of the sample, ∗ is the convolution, PSF(x, y) is
the incoherent point spread function of the optical system, νx, νy are the spatial frequencies,
OTF(νx, νy) is the incoherent optical transfer function, which coincides with the theoretical power
spectrum of speckles defined by Eq. (7), SF (νx, νy) is the Fourier transform of the ground truth
image of S(x, y), F−1 denotes the inverse Fourier transform, |.| denotes the absolute value.

2.4. Experimental setup

The experimental setup is presented in Fig. 1(a). The laser beam (532 nm, Cobolt Samba,
continuous wave) was expanded and then reflected by the galvo-mirrors. The system of relay
lenses projected two galvo-mirrors (GVS411/M, Thorlabs) on the entrance aperture of the
objective (NA= 0.65, Olympus). The objective focused the beam on the input facet of the MMF
(NA= 0.22, diameter, d = 50 µm, FG050UGA, Thorlabs). By tilting the mirrors, the beam
was moved in the focal plane of the objective and different sets of modes have been excited
producing different intensity patterns on the MMF output facet. The magnified image of the
output facet was projected on the sample and the camera (pixel size= 4.8 µm, Basler acA 800-510
um) by the objective (NA= 0.75, Olympus), the tube lens (ACT508-250-A-ML, f = 250 mm,
Thorlabs) and the beamsplitter (BS025, Thorlabs). We measured the magnification of the system,
MG = 54 by imaging of 1951 USAF resolution test chart (R3L3S1N, Thorlabs). The cut-off
frequency of the magnified speckle pattern was calculated as ν0 = 2NA/(λ · MG). The total
intensity transmitted through the sample was measured by the avalanche photodiode (Thorlabs
APD410A2). The incident laser power was adjusted by the half-waveplate and the polarizing
beamsplitter cube (CCM1-PBS251/M, Thorlabs) to be 2 - 200 µW. The photodiode and the
camera were synchronized.

In general terms, the resolution can be defined as the minimum separation distance at which two
objects can be sufficiently distinguished. As a sample we used round defects with a known size at a
known distance from each other (as shown in Fig. 1(c)). The samples were specifically designed for
these experiments and made in the cleanroom environment using CMOS-compatible technologies
and standard photolithography procedures without any fluorescent labelling. Maskless ultraviolet
photolithography, followed by lift-off of sputtered aluminum patterns has been used to fabricate
a sample that represents a simple model of the defects on a wafer surface or a microcrack in
a silicon solar cell. Samples were accurately characterized by a high-NA optical microscope.
The results are summarized in the table in Fig. 1(c). The geometrical parameters of the samples
are normalized by the 54× magnified diffraction limit of the MMF. Each sample was placed
between the beam splitter and avalanche photodiode in the image plane of the tube lens. Samples
were illuminated with the magnified image of the output facet of the MMF. The same image was
recorded by the camera.
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3. Results

3.1. Speckle-based imaging system

The quality of the reconstruction in compressive sensing largely depends on the properties of
matrix A: it is desirable to have a linearly independent set of speckle patterns. Otherwise, some
measurements do not add any new information. The absence of correlation between vectors
guarantees their linear independence [22]. Here we analyse how the correlation between speckle
patterns and their linear independence can be controlled by the scanning strategy (number of
points and the distance between points) for a square scanning grid.

Optimal compressive imaging in a diffraction limited system requires the number of measure-
ments to be less or equal to the number of modes, M ≤ Mmodes [23]. We estimated the number of
modes by the formula for an ideal cylindrical optical waveguide [24]:

Mmodes ≈
(︂ π
λ

dNA
)︂2

/2, (6)

where d is the diameter of the fiber core. Our fiber supports about 1050 modes for a single
polarization. The output speckle pattern is the result of interference of propagated MMF modes.

An uncorrelated set of speckle patterns requires an optimal scanning grid. We consider a
coupling coefficient between the i-th linearly polarized input field Ein

i (x, y) and the j-th mode
Ej(x, y) as an overlap integral αij =

∬
Ein

i (x, y)E∗
j (x, y)dxdy. Since the NA of the coupling

objective is greater than the NA of the fiber, we can approximate the input field as a delta
function: Ein

i = δ(x − x0i)δ(y − y0i) and therefore αij = E∗
j (x0i, y0i), where x0i and y0i are the

center coordinates of the i-th input beam. If the two input beams are closer than the diffraction
limit of the fiber, their coupling coefficients are approximately the same. As a result, they excite
two similar sets of fiber modes and the produced output speckle patterns are linearly dependent
and correlated. The distance between input scanning points should be not smaller than the
diffraction limit of the MMF. However, we can also excite another set of linearly independent
speckle patterns by using orthogonal polarization on the input [25].

In our experiments, the distance between adjacent points was set to 1.14 µm that is equal to
the diffraction limit of the MMF. The illumination patterns were formed by scanning the focused
beam over the input facet on a 31 × 31 points equidistant square grid with a size of 35 × 35 µm
(Fig. 2(a)). The total number of incident speckle patterns was M = 961. The typical speckle
pattern produced by the MMF is presented in Fig. 2(c).

In the first set of experiments, we characterized the measured speckle patterns, Ii(x, y). We
calculated the mean power spectrum density (PS), as PSexp(ν′x, ν′y) = < |F (Ii(x, y)|2>, where
ν′x = νx/ν0, ν′y = νy/ν0 are the normalized spatial frequencies. The theoretical PS is [26,27]:

PStheory(ν
′
x, ν′y) =

{︄
<I>2(δ(ν′x, ν′y) + 1

ν2
0

8
π2 · [arccos(ν′) − ν′

√
1 − ν′2]), |ν′ |<1;

0, |ν′ | ≥ 1;
(7)

ν′ =
√︂
ν′2x + ν

′2
y . The cross sections along ν′x for the experimentally measured and theoretical

power spectra are presented in Fig. 2(b) by the orange open circles and the solid green line,
respectively. We see a good match, and as expected, the experimentally measured PS is limited
by a cut-off frequency ν0. However, PSexp has a peak at low frequencies and some high frequency
components at |ν′ |>1. To explain the difference, we calculated the PS of the average background
as PSbnd(ν

′
x, ν′y) = |F (

∑︁
i Ii(x, y)|2. The results, presented in Fig. 2(b) by the solid blue line,

show that the low-frequency peak in PSexp corresponds to the slowly varying background.
High-frequency components can be explained by noise in the background and are several orders
of magnitudes lower than the amplitude of the low-frequency part.
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Fig. 2. (a) Schematic image of the input MMF facet with the scanning grid. (b) Experi-
mentally measured PS (orange dots), background PS (blue line), and theoretical PS (green
line) of the speckle patterns along the dashed line shown in (d). The cut-off frequency is
marked by the black dotted line. The speckle patterns are diffraction-limited. (c),(d) Typical
intensity distribution (c) and mean power spectrum density PSexp (d) of 54× magnified
speckle patterns. (e) Probability density function of speckle correlation coefficients rij (blue
dots) and the Gaussian fit (orange line). The low mean value of rij guarantees that the speckle
patterns are uncorrelated. (f) Distribution of singular values for measurement matrix A
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Complicated effects of light propagation in MMF lead to the existence of a correlation between
incident and transmitted fields or optical memory effects [28]. For example, in MMF angular
memory effect, the rotation of the input field around the fiber axis results in the rotation of the
output field by the same angle. These effects were not taken into account in our simple analysis
of scanning strategy optimization and can lead to unexpected correlations of speckle patterns. To
ensure that experimentally measured patterns are both linear independent and uncorrelated we
calculated the probability distribution of correlation coefficients and singular values. To get rid of
high-frequency noise in measured speckle patterns, we filtered the recorded images in the Fourier
domain: I ′(x, y) = |F−1 (︁F (Ii(x, y)) · H(νx, νy)

)︁
|, where H(νx, νy) = 1, if

√︂
ν2x + ν

2
y ≤ ν0 and

H(νx, νy) = 0, if
√︂
ν2x + ν

2
y > ν0. We characterized the correlation between different speckle

filtered patterns by the Pearsson correlation coefficient:

rij =

∑︁
m
∑︁

n(I ′i (xm, yn) − I ′i )(I
′
j (xm, yn) − I ′j )√︂∑︁

m
∑︁

n(I ′i (xm, yn) − I ′i )2
·

1√︂∑︁
m
∑︁

n(I ′j (xm, yn) − I ′j )2
, (8)

where I ′i (x, y), I ′j (x, y) are the intensity distributions of two filtered speckle patterns and I ′i , I
′
j are

their mean values. The probability density function of correlation values is presented in Fig. 2(d)
by blue dots. The mean value of correlation µ = 0.02 was calculated by fitting experimental

density distribution by normal distribution f (rij |µ,σ) = 1√
2πσ

e−
(rij−µ)

2

2σ2 . The fit is presented in
Fig. 2(d) by orange line. Such a low µ means that, in average, speckle patterns are uncorrelated.

We studied the linear independence of the measured speckle patterns. We reshaped each
I ′i (x, y) into 1D vectors (1 × N2) and formed matrix A (M × N2). To calculate the rank of matrix
A, we performed singular value decomposition. All the singular values are far from zero ranging
from 1.5 × 103 to 2.5 × 105 with a well-pronounced peak around 3000 (Fig. 2(e)). It indicates
that there are no values that can be neglected. The rank of matrix A coincides with the number
of measured speckle patterns meaning that they are linearly independent. Therefore, we ensured
that the diffraction-limited speckle patterns are optimal for MMFCI.

3.2. Fiber-based label-free super-resolution imaging

In the second set of measurements, we experimentally investigated the resolution limits for
fiber-based label-free MMFCI. The samples were reconstructed using the GPSR algorithm with
τopt (see Appendix). Figure 3(b) represents the experimental results. Columns first till last
corresponds to samples 1-4. The high-resolution bright-field images of the samples are presented
in Fig. 3(a). We defined the resolution improvement factor as the theoretical diffraction limit
divided by the minimum feature size of the sample resolved by MMFCI. The smallest features
of samples 1-4 were 1.4, 1.8, 2.5, and 4 times smaller than the diffraction limit, respectively.
Our experiments demonstrated that samples 1-3 are nicely resolved by the proposed approach,
meaning that the resolution of MMFCI is at least 2.5 times better than the diffraction limit.

However, we were not able to experimentally resolve features that are four times smaller
than the diffraction limit. Whereas classical compressive sensing theory does not put any
restrictions on the resolution, it has been shown that the successful reconstruction cannot always
be achieved for a diffraction limited system [23]. The theoretical limit of the spatial resolution
improvement factor calculated for our samples was more than an order of magnitude larger than
the experimentally achieved values. Unsuccessful reconstruction of sample 4 is not a result of
the fundamental limit of MMFCI and can be explained by the presence of noise in matrix A and
measurement vector y [23].

We compared the performance of the proposed MMFCI with conventional approaches.
Figures 3(c) and 3(d) present the results for raster-scan microscopy and ghost imaging, respectively.
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Fig. 3. (a) Bright-field high-resolution ground truth images. (b) Experimental results for
MMFCI. (c) Theoretical results for raster-scan diffraction-limited imaging. (d) Experimental
results for Ghost imaging. Columns from left to right correspond of samples 1-4. Scale
bars are 100µm. The corresponding intensity of the signal across two dots is presented by
solid lines for ground truth images (green), MMFCI (orange), raster-scan diffraction-limited
imaging (blue) and ghost imaging (white)

Columns first to last correspond to samples 1-4. These methods can resolve only sample 1
because its feature size is comparable to the diffraction limit.

To analyze imaging resolution in more detail, we plotted the cross-sections along the x axis
passed through the centers of the dots for the MMFCI (orange line), conventional microscopy
(blue line), ghost imaging (white line), and ground truth (green line) in Fig. 3. Ghost imaging and
raster-scan approaches can resolve the sample only if the feature size is close to the diffraction
limit. Two distinctive peaks in the image of Sample 1 can be easily identified by all the methods
(Fig. 3, first row). However, the contrast (the difference between the peak and the gap intensities)
is close to one for MMFCI and only about 0.5 for conventional microscopy and ghost imaging
techniques. MMFCI also provides an almost perfect contrast for sample 2, whereas it is barely
resolvable by conventional imaging and not resolvable by ghost imaging (Fig. 3, second row).
While two peaks in sample 3 are not distinguishable neither by ghost imaging nor by conventional
microscopy, MMFCI clearly resolves them (Fig. 3, third row). Our results demonstrate the
supremacy of MMFCI over classical microscopy techniques in terms of spatial resolution and
imaging contrast.

In the next set of measurements, we studied the stability of the MMFCI. We repeated the
measurements of sample 3 using the same signal, y, but different matrices A constructed from
speckle patterns measured in 2 hours and 2 days. The results are presented in Fig. 4. Even though
the resolution slightly degrades in comparison with the measurements performed synchronously,
the two dots are well resolved even if 2 days between the actual sample measurements and the
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speckle pattern pre-calibration have passed. The experimental setup and the proposed approach
of MMFCI are stable enough to perform long-term super-resolution measurements with a single
pre-calibration episode.

Fig. 4. Stability of MMFCI measured for sample 3. The time gap between the calibration
and the measurements was: no gap (left), 2 hours (middle), 2 days (right)

3.3. Image compression

We are working in a highly compressive regime by reconstructing a 400 × 400-pixel image from
only 961 single-point measurements. Moreover, our computational approach allows for forming
final images of almost any size. To characterize the real compression ratio, we take into account
the amount of spatial information that we reconstruct. We imaged 1.9 × 1.9 mm sample resolving
two objects placed at a distance of 26 µm from each other. To be able to image this sample with
a conventional approach of similar quality, we would need to measure at least 150 × 150 pixel.
This results in a real compression ratio of 1502/961 = 23.

In the final set of experiments, we investigated the minimal number of measurements required
to resolve the sub-diffraction features with the proposed approach. We performed the MMFCI
reconstruction for the different number of speckles M. The examples of Sample 3 images
measured with M = 48, 192, 432 and 961 are presented in Fig. 5(a), (b), (c), (d), respectively.

The correlation between the reconstruction results and the ground truth as a function of M
for samples 1-3 is presented in Fig. 5(e). For M ≥ 48, correlation RO,S>0.3, meaning that the
reconstructed image and the ground truth are correlated even for such a very low number of
measurements. The correlation increases with the number of measurements followed by the
saturation, which is marked by a dotted blue line in the Fig. 5(e) and corresponds to Msat = 192.
At this moment, two dots can be resolved, as shown in Fig. 5(b). To ensure the good reconstruction
quality, we chose a twice higher number of measurements despite the fact that the correlation
does not show rapid growth with the number of measurements for M ≥ Msat. We show that
M = 432 provides to RO,S>0.8 for samples 1-3. Thus, about 432 measurements are enough to get
a high-quality image with MMFCI approach. As a result, the compression ratio can be increased
up to 1502/432 ≈ 52.

High compression allows to improve the imaging speed significantly. Because pre-calibration
can be done several hours in advance (as we showed in the previous section), the measurement
speed is only limited by a beam scanner. Imaging speed of 200 ms per frame (5 fps) is available
with the standard galvo mirror system.



Research Article Vol. 30, No. 7 / 28 Mar 2022 / Optics Express 10465

Fig. 5. (a), (b), (c), (d) compressive sensing images corresponding to different number of
measurements: (a) minimal number of measurements, (b) saturated regime transition point,
(c) optimized number of measurements and (d) maximum number of measurements Mmax
(sample 3). (e) Correlation function between the compressive sensing images O(x, y) and the
ground truth S(x, y) RO,S as a function of number of measurements M for sample 1 (yellow
curve), sample 2 (red curve), sample 3 (blue curve). The saturated regime and optimal
reconstruction transition points are marked by dotted blue and green lines correspondingly

4. Conclusion

Here we report on the successful reconstruction of sub-diffraction features (super-resolution) by
fast fiber-based label-free compressive imaging. The prior knowledge that the sample is sparse
allows achieving superior image quality and speed compared to the conventional techniques. We
believe that sparsity-based imaging can be applied to any sample because all natural objects
have a sparse representation in an appropriate basis, which is supported by many popular image
compression techniques, such as JPEG.

We have experimentally demonstrated the imaging speed of 5 fps and the spatial resolution 2.5
times better than the diffraction limit without using any fluorescent labeling. In our experiments,
the imaging speed was limited by the time that galvo mirrors switch between adjacent points of
the scanning grid. Acousto- or electro-optical deflectors, which do not contain any mechanical
moving parts, can improve scanning speed to approximately 10 µs per point [29]. As a result,
high-speed super-resolution imaging with 4 ms per frame or 250 fps for 1.6-megapixel images
can be achieved by using non-mechanical beam scanning system. It is three orders of magnitude
faster than state-of-the-art imaging through the same multimode fiber with a diffraction limited
resolution [8].
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Currently, the results are largely influenced by choice of the reconstruction algorithm. As we
show, the best performance can be achieved with the proper selection of regularisation parameter.
The future direction would be the development of algorithm optimization methods that do not
rely on the prior information about the sample.

To summarize, the proposed MMFCI approach merges high-speed super-resolution optical
label-free imaging with a potentially compact optical probe. We have shown that MMFCI is
stable enough to be used for long-term (more than a day-long) ultra-high-speed super-resolution
imaging. We experimentally demonstrated the resolution improvement better than could be
achieved by state-of-the-art label-free techniques, such as structured illumination microscopy.
Super-resolution fluorescence methods such as STED, PALM and STORM can theoretically
achieve infinitely small resolution. However this comes at a cost of long acquisition time of
about several minutes per frame [7]. Therefore, the demonstrated imaging speed of MMFCI is
significantly higher than the imaging speed of fluorescence super-resolution microscopy. The fiber
nature of the proposed approach paves the way toward high-speed and high-quality endoscopy.

Appendix: Algorithm optimization for a MMF-based super-resolution imaging

We experimentally investigated the optimal parameters of the GPSR reconstruction algorithm
for MMFCI. We illuminated the sample with M = 961 speckle patterns produced by the MMF
and recorded the total transmitted intensity for each illumination pattern. The intensities formed
measurement vector y and the speckle patterns filtered in the Fourier domain formed measurement
matrix A.

In Eq. (3), regularisation parameter τ defines the balance between the l1 norm and noise. The
reconstruction results are greatly influenced by τ: too large values of τ leads to overestimation
of sample sparsity. For example, for τ>τmax = |ATy|∞, x = 0 and the reconstruction fails [30].
To study the influence of the regularisation parameter on the image quality, we performed the
reconstruction with different values of τ. The reconstructed images for Sample 1 in comparison
with ground truth are presented in Fig. 6(a). For τ<τmax, the algorithm always reproduced the
number and the positions of dots. To quantify the image quality, we calculated the Pearson
correlation coefficient RO,S between the reconstructed image and the ground truth. The correlation
coefficient as a function of normalized regularization parameter τ/τmax for all the samples is
presented in Fig. 6(c). We defined τopt as the regularization parameter for which RO,S is maximal.
We see that for τopt<τ<τmax, the feature size is smaller and for τ<τopt is bigger than the ground
truth (Fig. 6(a)).

To explain this behavior, we performed numerical experiments with the measured set of speckle
patterns and corresponding A. We simulated the photodiode signal as ysim = Axsim+n, where xsim
is the 1D vector (N2 × 1) reshaped from the ground truth image and n = max(Axsim) · r · ϕ/100%,
where max(Axsim) is the maximum value of noise-free photodiode signal, ϕ is a noise ratio in
percent, and r is a vector (M × 1), which entities are randomly and uniformly distributed numbers
in the range (0,1).

We simulated the imaging procedure of samples 1-4 with different noise ratio ϕ and different
values of τ. The examples of Sample 1 reconstructions for 5 % noise level are presented in
Fig. 6(b). The correlation coefficients as functions of τ/τmax are presented in Fig. 6(e). Different
columns correspond to different samples, and violet, yellow, red and blue colors correspond to ϕ
= 50%, 10%, 5% and 0%, respectively. In the noise-free case, the correlation function for all
the samples has a plateau – a range of τ values where the correlation is equally high (Fig. 6(e),
blue areas). However in the presence of noise, the RO,S curves have peaks that define τopt. For
τ<τopt, the algorithm overestimates the feature size, for τopt<τ<τmax, the size is underestimated
(Fig. 6(b)) similar to the experiment (Fig. 6(a)). Higher noise level corresponds to the larger
value of τopt. It is in agreement with Eq. (3), where the larger value of τ makes the sparsity
term more significant compared to the difference between measurement result y and Ax. As
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Fig. 6. (a), (b) Reconstructed images of sample 1 for different values of regularization
parameter τ in comparison with the ground truth in experiment (a) and in simulations (b).
(c) Correlation between the measured image and the ground truth as a function of τ/τmax
for sample 1 (violet), sample 2 (yellow), sample 3 (orange) and sample 4 (blue). (d) Optimal
regularisation parameter τopt/τmax as a function of noise ratio in simulations for sample 1
(solid violet line), sample 2 (dashed yellow line), sample 3 (solid orange line), sample 4
(solid blue line). (e) Correlation between reconstruction result and ground truth as a function
of regularization parameter τ/τmax for the noise-free case (blue), 5 % noise ratio (red), 10
% noise ratio (yellow), 50 % noise ratio (violet). From top to bottom: sample 1, sample 2,
sample 3, sample 4
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the noise in the measurement increases, the value of the term | |y − Ax| |2 in problem Eq. (3)
increases. As a result, the sparsity term | |x| |1 is overestimated and the size of the sample features
is underestimated. To reconstruct sample vector x correctly the significance of the sparsity term
| |x| |1 should be increased by increasing τ. The higher noise level corresponds to the smaller
value of RO,S or the degradation of reconstruction (Fig. 6(e)).

The numerical result qualitatively reproduces experimental behavior. To achieve the highest
quality of the MMFCI image, GPSR algorithm requires the optimized value of regularisation
parameter τopt. In case of τ ≠ τopt, the feature size is reconstructed incorrectly. For τ<τopt the
resolution of the image degrades, for τopt<τ<τmax the feature size is underestimated and for
τ ≥ τmax the reconstruction fails. The value of optimal regularisation parameter τopt is specific
to both the sample and the noise level. To overcome this problem either an empiric adaptive
choice or an automated selection of regularisation parameter can be used [31,32]. In further
experiments, we use the experimentally determined optimal values of τ.
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