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Reflection ptychography is a lensfree microscopy tech-
nique particularly promising in regions of the electromag-
netic spectrum where imaging optics are inefficient or not
available. This is the case in tabletop extreme ultravio-
let microscopy and grazing incidence small angle x ray
scattering experiments. Combining such experimental con-
figurations with ptychography requires accurate knowledge
of the relative tilt between the sample and the detector in
non-coplanar scattering geometries. Here, we describe an
algorithm for tilt estimation in reflection ptychography. The
method is verified experimentally, enabling sample tilt deter-
mination within a fraction of a degree. Furthermore, the
angle-estimation uncertainty and reconstruction quality are
studied for both smooth and highly structured beams.
© 2022 Optica Publishing Group under the terms of the Optica Open
Access Publishing Agreement
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Introduction. Ptychography is a diffractive imaging technique
that enables simultaneous quantitative phase microscopy and
wavefront sensing [1]. Instead of producing a direct image of a
sample of interest on a detector, a series of diffraction intensities
is recorded while a sample is laterally scanned through a focused
beam. The recorded data are inverted via iterative phase retrieval
algorithms, resulting in a deconvolution of sample and illumina-
tion contributions in the observed signal [2,3]. Ptychography has
become a popular technique for extreme ultraviolet, x ray, and
electron microscopy, where the lensless experimental geometry
dispenses with the need for high-resolution imaging optics [4–6].
Moreover it has been used for visible-light label-free quantitative
phase microscopy [7,8], near-infrared wavefront sensing [9], and
terahertz imaging [10]. Throughout the past decade, the experi-
mental robustness of ptychography has been improved by means
of various self-calibration techniques. These include algorithms
for the correction of lateral [11,12] as well as axial [13,14]
position errors, wavefront instability [15], and partial coherence
[16,17]. An additional complication arises in reflection-mode
ptychography [18], where the sample and camera are situated

in a non-coplanar geometry. Tilting the sample introduces a
nonlinear coordinate warping in the observed diffraction data,
parameterized by the relative angle between the specimen and
the detector [19]. Inaccurate knowledge of this angle results in
model mismatch, with the effect of degraded imaging perfor-
mance. Here, we report an angle self-calibration algorithm for
reflection-mode ptychography. We demonstrate the method on
experimental near-infrared data. In addition, we investigate the
influence of the illumination wavefront shape on the uncertainty
of the retrieved angle.

Far-field diffraction between two mutually tilted planes is
given by [19–21]

ψ̃ (u, v) =
∬

ψ (x′, y′) exp [−i2π (ux′ + vy′)] dx′ dy′, (1)

where x′, y′ denote the sample (= source) coordinates. The rela-
tion between spatial frequencies u, v and observation coordinates
x, y is described by the mapping

T : u =
x
λr0

cos θ +
sin θ
λ

[︄(︃
1 −

x2 + y2

r2
0

)︃1/2

− 1

]︄
, v =

y
λr0

,

(2)
where r0 =

√︁
x2 + y2 + z2 denotes the distance from the sample

plane origin to a point x, y in the observation plane. Here, z is the
distance from the sample plane origin to the observation plane
origin, and θ is the angle between the sample surface normal
and the optical axis (cf. Figure 1). Equations (1) and (2) assume
a small detection numerical aperture, i.e., x, y ≪ z. For θ ≠ 0,
the coordinate transformation distorts the diffraction lobes with
increasing distance from the center coordinate. This is illustrated
in Fig. 1, where the observed diffraction pattern under oblique
incidence is equivalent to the diffraction pattern observed under
perpendicular incidence when subjected to the mapping T.

Backward mapping versus forward mapping. We consider
two approaches for numerically transforming a function from
one coordinate system to another (see Fig. S1 in Supplement 1).
The first method, referred to here as forward mapping, applies
a coordinate transformation to the input (= detector) coordinate
grid (x, y) → (u, v) = T(x, y) to find the associated grid points
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Fig. 1. Effect of sample tilt on diffraction. (a) Sample and detector
in coplanar detection geometry and perpendicular incidence illumi-
nation. (b) Non-coplanar geometry with oblique illumination. The
diffraction pattern in (b) is obtained via nonlinear transformation T
of the diffraction pattern in (a) and vice versa.

in output (= spatial frequency) coordinates. Due to the nonlin-
earity of the transformation, the output grid exhibits irregular
spacings. As most commonly used fast Fourier transform (FFT)
methods require uniform grids, the intensity on this warped grid
is interpolated onto a regular grid. This method was previously
suggested for use for tilted plane coordinate correction by Gard-
ner et al. [22]. However, this approach has some downsides in
terms of interpolation: The data points for this method are not
on a rectilinear grid aligned with the coordinate axes, which
excludes the use of fast bivariate interpolation schemes, such as
bilinear or bicubic [23,24]. Alternatives to these bivariate inter-
polation methods tend to either compromise accuracy or are
much slower in determining the interpolation weights for neigh-
boring pixels. Such interpolation schemes are no option for our
angle correction method (see below), which needs to embed the
interpolation step into each iteration of the algorithm. Thus, a
more performant approach is needed.

An alternative approach to transform the intensities is to sub-
stitute x(u, v) and y(u, v) into the measured intensity I(x, y) using
the inverse mapping T−1. The reverse transformation is applied
to an evenly spaced spatial frequency output grid to find the
associated observation coordinates. Next, the intensity func-
tion at those detector points is found by means of interpolation
I(xwarped, ywarped) = I(T−1(uregular, vregular)). Since the data points for
this interpolation step are located on a regular detector pixel
grid, this interpolation step is compatible with bilinear inter-
polation, which is straightforward and fast [25]. As repeated
transformation and interpolation steps of the diffraction pattern
are required for the angle calibration procedure reported in this
work, a backward mapping approach with bilinear interpolation
is used in this paper. Starting from the forward transform [see
Eq. (2)], the following expression for the inverse transformation
T−1 was derived (see Supplement 1 for more details):

T−1 : x =
y
v
λu + sin(θ)
λ cos(θ)

− ztan(θ), y =
−2vz2

b0 − [b2
0 − 4az2]1/2

,

(3)
where

a = cos(θ)2v2 −
cos(2θ)
λ2 + u2 + 2 sin(θ)

u
λ

, (4)

Algorithm 1. Angle calibration ptychographic iterative
engine (aPIE) based on the Luus–Jaakola algorithm

and
b0 = −2z sin(θ)(u +

sin(θ)
λ

). (5)

In its simplest form, ptychography models the wave diffracted
by a sample as the product of an illumination and a sample
transmissivity or reflectivity, depending on the operation mode.
The resulting wave exiting the sample plane is propagated into
the observation plane by application of a suitable diffraction
model. This results in an estimated wave in the detector plane,
which can be updated in such a way that it complies with the
experimental observation [2,3]. Here, we add an extra step that
minimizes the mismatch between the forward model and the
experimental observation with respect to the a priori unknown
specimen tilt angle θ. To this end, we measure model mismatch
by the error metric

e =
∑︂
u,v

∑︂
j

|︁|︁|︁Ij,m (u(x, y, θ), v(x, y, θ))) −
|︁|︁F [︁

ψj (x′, y′)
]︁ |︁|︁2|︁|︁|︁ , (6)

where the summation is over all measured spatial frequencies
(u, v) and scan positions (j), and F denotes two-dimensional
Fourier transformation. For energy conservation upon coordi-
nate transformation, the data are normalized to the measured
total energy. Note that due to the nonlinearity of the transforma-
tion, a Jacobian determinant correction will be required when
operating closer to grazing incidence or at higher NA. Such
a correction is described for tilted plane propagation with the
angular spectrum method in [26]. Our angle estimation method,
summarized in Algorithm 1, is a combination of a randomized
search inspired by the Luus–Jakoola (LJ) algorithm [27] and the
extended ptychographic iterative engine (ePIE) [3]. At each iter-
ation, the measured diffraction intensities are transformed with
T−1 for a test angle θt drawn from a uniform probability distribu-
tion (U) of width 2∆θ and centered around the current estimate
θ. As the candidate solution approaches the true tilt angle, the
model mismatch in Eq. (6) decreases. Therefore, if the error et

for the test angle θt is lower than the error c · e for the previous
angle estimate θ, the latter will be replaced by the former. We
added an additional factor, c = 0.999, to make the comparison
between the test angle error and the previously estimated angle
more robust. At every iteration of the algorithm, ∆θ is linearly
contracted to narrow down the search space.

Next, inspired by the approach of mPIE [28], a momentum
acceleration term vj is added to the angle to speed up the rate of
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Fig. 2. Experimental setup. A supercontinuum source is spec-
trally limited via short pass (SP1000) and long pass (LP700) filters
to a wavelength range of 700 nm to 1000 nm. The beam is lin-
early polarized using polarization beam splitters (PBS). A narrow
spectral band (∆λ = 0.6 nm) is selected by means of an acousto-
optic tunable filter (AOTF). The beam is expanded through lenses
L1 (f1 = 25 mm) and L2 (f2 = 300 mm), and modulated through
pinholes PH1 (empty pinhole) or PH2 (pinhole with a Scotch Tape
diffuser). Finally the pinhole is imaged by L3 (f5 = 500 mm) onto
the sample. The sample and detector are mounted on concentric
rotation stages (dashed lines), permitting flexible control in the tilt
angle θ between the sample normal and the optical axis.

convergence. This momentum term is initialized at zero, and gets
updated at the end of every iteration: vj = (θupdate − θ) + η · vj−1,
where η = 0.7 is a friction term. At the end of each loop, the
angle estimate is updated with the following momentum update
step θ = θupdate + vj.

To test our angle calibration method in experiment, a series
of ptychographic measurements were recorded in a tilted-plane
reflection geometry using a USAF (Thorlabs R3L1S4P) reso-
lution test target. The experimental setup is shown in Fig. 2.
Illumination around a wavelength of 708.8 nm was generated by
spectrally limiting a super continuum source by means of short
pass (SP1000) and long pass (LP700) filters, and finally by
selecting a narrow wavelength band with an acousto-optic tun-
able (AOTF) filter (∆λ = 0.6 nm). The sample and detector were
mounted on two concentric rotation stages, enabling control of
the tilt angle θ between the incident beam and the specimen’s
surface normal. Using this setup, 20 data sets were recorded at
a tilt angle of 43 ± 1◦, which was triangulated from the setup
geometry. In half of these measurements, a focused top-hat beam
was used, while a structured beam was used in the other half.
The beam structuring was achieved by means of a piece of
Scotch Tape. Each data set consisted of 152 diffraction patterns
recorded on a CCD camera (AVT GT3400, 14 bit, 3384 × 2704
pixels) at a sample–detector distance of 71.4 mm. The linear
overlap ratio in these scans was 87%.

Reconstructions were executed on a NVIDIA Titan RTX
GPU. Reconstructions in this paper have been preprocessed
by 200 iterations of ePIE, before applying 400 iterations of
aPIE. Representative reconstructions of the object and the probe
are depicted in Figs. 3(d) and 3(f) for the case of smooth
illumination, and in Figs. 3(c), 3(e), 3(g) for the case of a struc-
tured illumination. Upon starting angle optimization, the error
[Eq. (6)] rapidly improves as illustrated in Fig. S2 (Supplement
1). The robustness of the angle calibration of the smooth beam
was compared with that of the structured beam through an esti-
mation of the standard deviation of the recovered values of the
tilt angle θ.

The results of this comparison are shown in Fig. 3(a), where
the solid line and shaded areas indicate the average and standard

Fig. 3. (a) Comparison of the standard deviation of the estimated
angle for smooth (green) and structured (blue) illumination. The
solid lines indicate the average tilt angle estimate, while the shaded
areas indicate the region within ±1 standard deviation (averaged
over 10 measurements) from the mean. (b) Convergence behavior
for varying initial tilt angle θ guesses. The green lines (with round
markers) indicate smooth illumination and the blue lines indicate
structured illumination. The results shown in panels (a) and (b) are
preprocessed by 200 iterations of ePIE at the original angle estimates
before aPIE is started. (c1)–(c3) Image reconstructions (c1) before,
(c2) during, and (c3) after convergence of the angle correction
method using structured illumination. Note that ePIE convergence
was already reached in panel (c1) before the angle correction was
initiated. (d),(f) Reconstructions of object and probe, respectively,
obtained with a smooth beam. (e),(g) Reconstructions of object and
probe, respectively, obtained with a structured beam.

deviation of the current estimate of θ. The solid curves were cal-
culated by averaging reconstructions of ten different data sets. It
is seen that the standard deviation for the angle estimate is much
smaller for the case of the structured beam, indicating more
precise parameter estimation performance. This is also reflected
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Fig. 4. Convergence diagram of a combined calibration of both
the tilt angle θ and the sample–detector distance z. The calibra-
tion alternates between 50 iterations of aPIE and 200 iterations
of zPIE on experimental data with a structured beam illumination
[cf. Figure 3(f)]. Each colored trajectory represents the conver-
gence behavior for a different initial estimate starting on the dashed
circles. The reconstructions converge to z = 71.16 ± 0.04 mm and
θ = 43.37 ± 0.06◦.

in the improved object reconstruction quality in Fig. 3(e) (struc-
tured) as compared with Fig. 3(f) (smooth). Next, we tested the
robustness of our method against inaccurate initial tilt angle esti-
mates. A series of reconstructions were carried out with varying
starting values for θ. The recovered tilt angle θ for these recon-
structions as a function of the number of iterations is shown in
Fig. 3(b). It is seen that our angle calibration method retrieved
the angle within the aforementioned uncertainty given by the
respective beam profile for initial deviations as large as 10◦,
with a more rapid convergence rate observed for the structured
illumination. Finally, the feasibility of a combined calibration of
the detector sample distance z and the tilt angle θ was investi-
gated. For this purpose, a series of reconstructions was executed
with varying starting θ-z-estimates of the structured beam data.
These reconstructions alternated between 200 iterations of zPIE
[14] and 50 iterations of aPIE for 2500 iterations.The trajectories
of these combined reconstructions through the joint θ-z plane
are shown in Fig. 4, where each color indicates a single recon-
struction with a different initial guess. These reconstructions
converged to a value for theta of 43.37±0.06◦ and to a value for
z of 71.16 ± 0.04 mm, where the uncertainty is a single standard
deviation in the final parameter estimates.

Discussion and conclusion. In this Letter, we proposed a self-
calibration algorithm for estimating the tilt angle in non-coplanar
reflection ptychography. The method was tested experimentally,
where it showed robust performance for an initial estimate range
up to 10◦ deviation from the true angle. We observed empirically
in these tests that a structured illumination helps to reduce the
uncertainty in the angle estimate and to improve the convergence
rate of our proposed algorithm. Additionally, we demonstrated
that despite of the explicit z-dependency of the underlying coor-
dinate transformation, an alternating descent optimization of the
tilt angle and detector–sample distance is feasible, even when
neither parameter is known precisely. In summary, aPIE will

improve the robustness and allow for tilt angle self-calibration
in reflection-mode ptychography.
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