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Abstract: Conventional (CP) and Fourier (FP) ptychography have emerged as versatile quantita-
tive phase imaging techniques. While the main application cases for each technique are different,
namely lens-less short wavelength imaging for CP and lens-based visible light imaging for FP,
both methods share a common algorithmic ground. CP and FP have in part independently evolved
to include experimentally robust forward models and inversion techniques. This separation has
resulted in a plethora of algorithmic extensions, some of which have not crossed the boundary
from one modality to the other. Here, we present an open source, cross-platform software, called
PtyLab, enabling both CP and FP data analysis in a unified framework. With this framework,
we aim to facilitate and accelerate cross-pollination between the two techniques. Moreover, the
availability in Matlab, Python, and Julia will set a low barrier to enter each field.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Ptychography [1,2] has grown into a mature technique for x-ray, extreme ultraviolet (EUV),
and electron microscopy. It has revolutionized synchrotron-based x-ray microscopy, where it
improves upon previously existing scanning transmission x-ray microscopy (STXM) data analysis
techniques [3–6]. Three major benefits of ptychography over STXM are: (1) decoupling of the
illumination spot size from the achievable lateral resolution, (2) quantitative amplitude and phase
contrast, and (3) access to wavefront diagnostics [7–11]. Similar benefits have subsequently been
demonstrated for scanning transmission electron microscopes (STEMs) [12–14], where it recently
produced micrographs at record-breaking resolution [15,16]. A parallel line of development is
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EUV laboratory-scale microscopy, where ptychography is a promising candidate for actinic inline
metrology for lithography applications [17–19] and a tool for chemically-resolved microscopy
[20–22]. In ptychography, a specimen is laterally scanned through a localized illumination,
referred to as probe. A detector downstream of the specimen records a sequence of diffraction
patterns. These observations lack phase information preventing direct inversion. Ptychography
solves this problem by recording data from laterally overlapping specimen regions of interest. This
acquisition scheme opens up the possibility for phase retrieval and simultaneous deconvolution
of illumination and specimen information. Beyond operation with x-ray and electron radiation,
ptychography has been implemented with extreme ultraviolet, visible, near-infrared, and terahertz
radiation [19,23–26].

Fourier ptychography [27] follows a similar operational principle as (conventional) ptychogra-
phy, denoted FP and CP, respectively, throughout this paper. In FP, a specimen is illuminated from
different directions, typically steered by means of an LED array, which serves as a controllable
condenser. A sequence of low-resolution bright and dark field images is recorded in a lens-based
microscope. Changing the illumination direction amounts to shifting the object spectrum with
respect to the pupil of the optical system. If the illumination direction is changed in such a way
that two recorded images share information in the Fourier domain, phase retrieval techniques can
be applied to separately reconstruct the object spectrum and the pupil of the optical system. Thus
FP has three attractive features: (1) The low-resolution data can be stitched together to a large
synthetic numerical aperture (NA), resulting in both a large field of view and high resolution. In
contrast to most wide-field systems, FP thus does not trade-off resolution and field of view. (2)
after conversion to real-space, the recovered object spectrum gives quantitative amplitude and
phase maps of the sample; (3) the reconstructed pupil function enables aberration diagnostics
of the optical system at hand [28–30]. While FP has mostly found applications in the visible
domain, recent implementations using infrared radiation and x-rays have been reported [31,32].

1.1. Contribution

In both CP and FP, the recorded data jointly sample real and reciprocal space [33–37]. In CP,
the probe serves as a real space window that selects local spatial frequency content. In FP, the
pupil selects a low-resolution real space image from a localized Fourier space bandpass. In fact,
the forward models of CP and FP are mathematically equivalent and the measured data cubes
may be regarded as rotations of one another in phase space [36]. Although this equivalence is
well-known, CP and FP have evolved into two separate communities with different algorithmic
approaches and self-calibration techniques. Here, we report on a numerical data analysis toolbox,
named PtyLab (code available online [38]), which places the equivalence of CP and FP at the
center of its logical structure, resulting in three main contributions of this work:

1. Cross-modal: PtyLab allows to not only analyze CP and FP data, but also convert the same
data set between the two domains. This flexible conversion between CP and FP leads to
both physical insights as well as algorithmic cross-pollination of both domains. To our
knowledge, PtyLab is the first ptychography code designed to be cross-modal, unifying the
data analysis frameworks of CP and FP.

2. Multi-lingual: PtyLab is the first cross-platform ptychography code available in three
programming languages, namely Matlab, Python, and Julia. Thus, it enables researchers
with different programming backgrounds to communicate and exchange ideas based on a
unified terminology and and code structure.

3. Open access: PtyLab is released together with various experimental data sets and
accompanying hands-on tutorials, where the user is trained in practical data analysis. We
hope that this contributes to standardized data analysis in both CP and FP.
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In addition, PtyLab features a variety of algorithmic extensions as compared to currently
available ptychography software packages. Some of these were previously reported by us and
are now provided open source. This includes axial (zPIE) [39] as well as angle (aPIE) [40]
correction engines, code to analyze ptychographic optical coherence tomography (POCT) data,
efficient wave propagation algorithms both valid for high NA and polychromatic radiation, and
detector subsampling (sPIE) [25,39–42]. Other novelties are reported here for the first time
such as external reference wave ptychography. In addition, previously reported algorithms
developed by other groups are included such as the extended ptychographic iterative engine
(ePIE) [43], multislice (e3PIE) [44], mixed states [45], information multiplexing (PIM) [46],
momentum acceleration (mPIE) [47], Tikhonov and total variation regularization [20,48,49],
correlation-based lateral position correction [50], and orthogonal probe relaxation (OPR) [51].
In writing this manuscript, we pursued the goal of providing a concise overview of the various
engines available to date in ptychography.

1.2. Related work

Most CP packages reported to date have focused on high performance computing, which is key
for day-to-day user operation at large scale facilities, where beamtime is scarce and experimental
feedback is needed quickly [52–59]. Another line of research has investigated the capabilities
opened up by modern automatic differentiation (AD) and machine learning (ML) toolboxes
[60,61]. AD frameworks offer flexibility as they simply require the user to specify a desired
forward model, typically specified in the form of a suitable loss function and possible regularizers.
This approach is convenient for the user as it dispenses with the need to derive challenging gradient
expressions, the latter of which oftentimes involve complex-valued (Wirtinger) derivatives [62,63].
It is thus for instance straightforward to switch from one regularizer to another without analytically
deriving and programming the underlying gradient expressions into the underlying software. ML
approaches, in particular those based on neural networks, have been used to significantly speed
up the reconstruction process, lower the sampling requirements in the raw data, and to embed
denoising priors [64,65]. However, neural network approaches need to be trained based on data
sets that have already been solved for the corresponding real space images. In Ref. [64] the
neural network was trained based on the solution of an iterative solver. Moreover, training a
neural network capable of solving ptychography problems is a memory-consumptive, large-scale
computational challenge, that cannot be performed on small hardware architecture. We thus
believe the need for memory-efficient but possibly slower iterative algorithms remains, despite
the exciting possibilities opened up by neural networks [66]. From the above referenced work,
we shortly describe some of the features of two prominent code projects, namely PtychoShelves
[57] and PtyPy [54], to illustrate some of the different design choices made in PtyLab.

PtychoShelves [57] is a Matlab-based software package for ptychography, designed with
large-scale synchrotron facilities in mind. Shelves refer to the modular coding framework
representing bookshelves, from which desired books (e.g., detector module, reconstruction engine
etc.) can be taken out and inserted into the processing pipeline. To provide data handling across
synchrotron facilities worldwide, PtychoShelves supports commonly used X-ray detectors as
well as instrument control software. Reconstructions are highly-optimized for Matlab-based
GPU acceleration as well as CPU processing through reconstruction engines written in binary
C++ code and parallelized through the OpenMP multiprocessing interface. The C++ code
supports Difference Map [8] and Maximum Likelihood [48] engines, together with other features
such as mixed state [45] and multi-slice ptychography [44]. A wider range of reconstruction
features are available through Matlab-based GPU engines, including an iterative least-squares
solver for maximum-likelihood ptychography [55], orthogonal-probe-relaxation [51], near-field
ptychography [67], and position correction [68].
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PtyPy [54] is an open-source ptychography framework written in Python. It follows the Python
coding style and is therefore modularized and object-oriented. The physical models are abstracted,
which results in readable and concise code interfaces at a user level. The key element is the
so-called POD class (probe, object, diffraction), which holds the access rule for a single position,
object mode, and probe mode. For parallelization of the reconstructions, PtyPy uses a message
passing interface (MPI), which allows for flexible usage on standard office PCs, workstations,
and clusters. MPI favors non-sequential reconstruction algorithms that can be parallelized (e.g.
Difference Map [8] and Maximum Likelihood [48]). So far, a broad range of forward models
are implemented (e.g. mixed state ptychography [45], near-field ptychography [67], and lateral
position correction [68]). The PtyPy framework is actively developed and novel features (e.g.
GPU acceleration) are constantly added.

Both PtychoShelves and PtyPy are powerful ptychography data analysis platforms, but their
design for high-performance computing poses an entry barrier for simple, one-off reconstructions
in an academic-lab setting. In such cases, rapid code prototyping and ease-of-use can be more
desirable than highly-optimized data handling and reconstructions.

Unlike CP, FP has not seen the same wide-spread use within research institutions that resulted
in well-developed and maintained coding platforms. The existing open-source FP codes in
[69–74] exist mainly to supplement publications by providing only minimal working examples
with limited functionality intended. Recently an attempt has been made to provide a Matlab-based
FP reconstruction platform [75], which among other features provides raw data denoising, GPU
processing, and LED misalignment correction.

Our goal here is to bridge the gap between CP and FP, thereby allowing for a cross-pollination
of the two domains and a unified algorithmic framework. As compared to the above highlighted
software packages PtyLab is less focused on high performance and distributed computing, but puts
emphasis on providing an ptychography ecosystem for researchers interested in rapid prototyping
and exchanging algorithms - across modalities and programming languages.

1.3. Outline

In Section 2 we revisit the idea of reciprocity, which formalizes the equivalence between
CP and FP - the central idea for the unified software design in PtyLab. Section 3 details
language-specific implementation details in Matlab, Python, and Julia. Section 4 serves as a
comprehensive overview of the available forward models and the corresponding optimization
algorithms. Practical features for scan grid optimization are described in section 6. PtyLab is
released with various data sets and hands-on tutorials, which are described in section 7.

2. Implications of reciprocity for ptychography

One may think of the data sets recorded in ptychography in analogy to a musical score, where
frequency information is prescribed at particular signatures in time. Once such a time-frequency,
or phase-space, representation is given in form of a musical score, we can convert this information
into either the time or the frequency domain. For example, we can digitally record a concert
and Fourier transform the resulting signal. These processing steps would involve the temporal
waveform and its frequency spectrum, respectively. Likewise, ptychography jointly samples real
and reciprocal space representations of a signal, where for simplicity we ignore the additional
complication of phase retrieval for the moment. The goal of ptychography is to convert partial
phase-space information of a signal into a pure space or a pure spatial frequency representation.
Physically, the phase-space description of ptychography [33] is intimately connected to the
principle of reciprocity [77], which states that by interchanging the illumination and detection
direction in an optical system identical data sets can be observed.

We would like to distinguish two types of reciprocity in ptychography. Type-I reciprocity
refers to the ability to design separate CP and FP optical systems, both of which produce 4D
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data cubes which are essentially related by a phase space rotation [36]. In addition, we define
type-II reciprocity, which refers to the ability to algorithmically convert a 4D data cube from one
domain to the other. Thus type-I reciprocity is essentially a statement about the ability to design
different CP and FP hardware embodiments producing the same 4D experimental data cube.
Type-II reciprocity is a matter of data processing: once a 4D data cube is measured in either a CP
or a FP representation, it can be converted into the other respective domain and subsequently
reconstructed.

Figure 1 illustrates this idea of reciprocity in the context of ptychography. In CP (Fig. 1(a)), an
object is laterally translated against a typically focused beam. This probe localizes the origin
of the measured signal in real-space (scan coordinates s). A sequence of diffraction patterns is
captured on a pixelated detector, which is assumed here to be located in the far field (spatial
frequency u). Hence the data cube in CP consists of a sequence of angular scattering maps,
each corresponding to a particular real-space specimen region localized to the spatial extent
of the incident probe (Fig. 1(b)). In FP, an object is held at a fixed location under variation of
the illumination angle (Fig. 1(d)). Thus the angular spectrum emanating from the sample is
shifted over the finite-sized lens aperture. The pupil serves to bandpass filter the object’s spatial
frequency spectrum, resulting in a data cube consisting of dark and bright field images (Fig. 1(c)).
Thus the data cube in FP consists of a sequence of real-space images, each corresponding to a
particular reciprocal space portion of the object spectrum localized to the passband admitted
by the pupil of the imaging system. In summary, both flavors of ptychography sample real and
reciprocal space.

We illustrate the aforementioned types of reciprocity in two ways: First, consider replacing
the detector in the FP setup (Fig. 1(d)) with a pixelated light source. Turning on a single point
source at a time and placing the detector in the far field of the sample, we can record a CP data
set by scanning the point source location, as pointed out in a recent review article [2]. Of course,
this hardware conversion ability faces practical limits imposed by the lens, which may cause a
space-variant probe, but this complication is ignored here. Thus via hardware modification we
can convert a CP experimental setup into and a FP system, which is a type-I reciprocity. Type-II
reciprocity concerns the captured data itself and does not require any hardware modifications.
It is possible to convert the measured data cube from one modality to the other. Suppose in
Fig. 1(a) we scan the sample (for conceptual simplicity) on a regular raster grid and record a
sequence of diffraction patterns. Then each pixel of the detector can be regarded as a traditional
(single-pixel) scanning microscope data set. The data on each individual pixel may directly
be reshaped into a two-dimensional real-space image, simply by permuting its dimension in
correspondence with the scan trajectory. Practically, aperiodic translation trajectories and high
NA effects require interpolation techniques. However, at low NA and using raster scan grids
the data reshaping operation can be implemented with a single line of code (namely, a permute
operation), converting for instance a CP data set into a sequence of low-resolution bright and
dark field images, the latter of which constitutes the raw data for FP. While we described type-II
reciprocity phenomenologically in this section, a mathematical proof of this conversion ability is
provided in the appendix. The mathematical details also elucidate the correspondence between
reconstructed quantities in CP and FP. We provide online tutorials that illustrate the conversion
between CP and FP [38].

The ability to convert CP and FP data has a bearing on the computational complexity of
inversion algorithms underlying ptychography. Suppose we are given a CP data cube consisting
of diffraction patterns with U2 pixels at S2 scan points. A single iteration of a parallelized
ptychography solver (for example difference map [8]) requires us to numerically propagate exit
waves from all scan positions to the detector plane and back. The Fourier transform operations
involved will have a computational complexity of O

[︁
S2 · U2 · log (U)

]︁
if we work in the CP

domain, while it scales with O
[︁
U2 · S2 · log (S)

]︁
if we convert the data into the FP domain. The
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Fig. 1. Illustration of the operation principle and equivalence of conventional and Fourier
ptychography. (a) An object is laterally translated against a localized illumination profile.
(b) In CP, the recorded data cube is a sequence of diffraction patterns, providing spatial
frequency (u) information for each scan position (s). Each detector pixel alone contains
a sequence real-space information that may be reshaped into a low-resolution real-space
image of the sample. (c) In FP, the recorded data cube is a sequence of low-resolution bright
and dark field image plane (s) data corresponding to bandpass-filtered versions of the object
spectrum. The shifts with respect to the pupil are controlled by shifting the illumination
direction (u). (d) Single-lens FP experimental configuration. Data in panel (b) and (c) from
[76]

difference in the log-terms can result in a practical speed up, provided that the number of detector
pixels per dimension U and the number of scan positions per dimension S is largely different.

In summary, utilizing type-II reciprocity is the central motivation for the design of PtyLab: CP
and FP data can be converted into each other. A unified data analysis framework thus allows to
migrate between the two modalities. A benefit of this data conversion ability is the applicability
of diverse inversion algorithms and self-calibration routines in the domain in which they are most
conveniently applied. Another benefit of reciprocity is the trade-off in computational complexity.

3. Code structure

In this section we describe structural workflow in PtyLab. Our overall goal is to provide a code
that enables flow of algorithmic ideas and rapid prototyping beyond the boundaries of modality
(CP/FP) and programming language (Matlab/Python/Julia). Thus collaborators with different
programming language preferences or from different communities (e.g. synchrotron-based CP
versus visible light FP) can easily exchange code, without being perfectly literate in the other
programming language. This approach comes at the benefit of a unified structure and naming
convention but at times at the expense of certain language-specific programming conventions.
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The following subsection describes the common structure independent of programming language.
Subsequently, we address differences in the Matlab, Python, and Julia implementations.

3.1. Platform- and modality-independent workflow

A high-level overview of the PtyLab’s workflow is illustrated in Fig. 2. Assuming CP or FP
data is stored in a local folder on the user’s computer, the first step is preprocessing the data
(see Fig. 2). Preprocessing converts the raw data into a PtyLab class object. The user specifies
physical input (illumination wavelength), hardware properties (detector pixel pitch, binning),
and geometric parameters (sample-detector distance [CP], lens magnification [FP], sample scan
trajectory [CP], illumination angles [FP]). In addition, the user specifies a forward model that
describes the propagation from end to end (CP: probe to detector, FP: pupil to detector). The
preprocessing pipeline then writes a single or multiple PtyLab class objects into a hdf5 file (see
Fig. 3) [78].

Fig. 2. Workflow in PtyLab. Experimental data is converted into a preprocessed hdf5 data
set. The remaining parameters controlling algorithmic and monitoring behavior and required
for reconstruction are set by an initialization routine. Various reconstruction engines and
forward models can be chosen to analyze the preprocessed data. After the reconstruction is
finished the reconstructed data is written into a final hdf5 file.

Second, the reconstruction script loads the preprocessed data. An initialization function
generates uniform or radomized starting estimates for the probe (CP) or pupil (FP) and object
(CP) or object spectrum (FP). In each the probe/pupil, object/object spectrum, and detector
planes, meshgrids are calculated. These meshgrids depend on the specified physical, hardware,
and geometrical parameters, as well as a forward model (propagator) that describes the mapping
between probe (CP) or pupil (FP) and detector planes. A variety of propagation models can be
specified, including angular spectrum (AS), scaled angular spectrum (SAS), Fresnel (Fresnel),
Fraunhofer (Fraunhofer), and tilted Fresnel diffraction. The latter is relevant for non-coplanar
reflection geometries and is typically performed only once on the raw diffraction data stack,
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Fig. 3. PtyLab HDF file structure of preprocessed (a) and reconstructed (b) data. The
blue boxes (top) show the mandatory fields, with specific differences between CP (yellow)
and FP (green) data. The grey box in panel (a) shows optional fields, that are nevertheless
recommended. Both CP and FP reconstructions struggle to converge when background is
not appropriately subtracted or accounted for in the forward model, subtraction being the
easier route. Initial estimates for the probe diameter in CP and the pupil diameter in FP
are recommended to be specified (both referred to as entrancePupilDiamater). This
can aid initial convergence in CP. Moreover, the circle fitting routine for position calibration
in FP [79], which is used in PtyLab, requires an estimate of the pupil diameter. Arrays
indicated with (*) are specified in SI units.

provided no angle correction is performed (see subsection 5.7 for further details). Fraunhofer
and Fresnel diffraction distinguish each other by an incorporation of a quadratic phase inside the
propagation model. This quadratic phase may be absorbed into the probe/pupil function and
can be compensated for post-reconstruction when a quantitative analysis of the reconstructed
wavefront (CP) or pupil (FP) is of interest to the user.

3.2. Matlab structure

The Matlab code structure is shown in Fig. 4(a). Here an object of class PtyLab is generated.
Its first-order properties (obj."firstOrder") contain the physics as well as the geome-
try of the experiment. In addition, there are second-order properties (obj."firstOrder"
obj.params."secondOrder"), which are algorithmic parameters (obj."firstOrder"
obj.params), monitoring control (obj.monitor), propagators as part of the forward model
(obj.propagator), and file export parameters (obj.export). Certain notational con-
ventions are noteworthy: the diffraction or image data is contained in obj.ptychogram, a
term borrowed from time-frequency analysis where the raw data is often referred to as spectro-
gram [80]. The dimensions of (obj.ptychogram) are (y, x, numFrames), which is different
from the Python convention (see subsection 3.3). The order along the first two dimensions
stems from Matlab’s most convenient use when adhering to row-column convention. Similarly,
obj.positions follows row-column convention.
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Fig. 4. The Matlab code structure (left) comprises a single class, which contains all
field relevant for ptychographic data analysis. The Matlab class is organized into first-
and second-order properties. First-order properties contain physical information (e.g.
wavelength) and geometrical parameters of the experiment. Second-order properties
are mainly found in params, which contains algorithmic properties (step sizes, number
of iterations, etc.) that are optimized during data analysis. Other second-order proper-
ties comprise monitoring behaviour (monitor), specification of the wave propagation
model (propagator), and input-output control (export). The Python code (right) con-
sists of five separate classes: ExperimentalData, Reconstruction, Params,
Monitor, and Engines. The Julia implementation consists of 4 main abstract types
called ExperimentalData, Reconstruction, Params, and Engines.
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3.3. Python structure

The Python structure is similar in idea to the Matlab structure, but is designed with a stronger
emphasis on modularity. As shown in Fig. 4(b), the Python implementation contains five classes:
ExperimentalData, Reconstruction, Monitor, Params, andEngines. Most
but not all of these classes reflect second-order properties in the Matlab structure. The
ExperimentalData class imports data from a preprocessed .hdf5 file, checks if all required
parameters for a ptychographic reconstruction are included, and saves them into an instance that
is immutable.

The Reconstruction class takes the ExperimentalData instance as the input, and
creates a mutable instance containing attributes that are optimized during a reconstruction process,
e.g. the probe/pupil, and the object, as well as attributes that are related to the optimizable
parameters, e.g. the error, the coordinates and meshgrids. Note that in the Python implementation,
the probe/pupil and the object are set as 6D arrays with the fixed axes [nlambda, nosm,
npsm, nslice, row, col], which are the number of wavelength, object state mixtures,
probe state mixtures, slices (for multislice ptychography), and rows as well as columns.

The Monitor class is used to display a reconstruction process. Equivalent to its Matlab
counterpart, one or two figures are created depending on the verbosity level set by users. A
default figure shows the updated object, probe, and reconstruction error. An optional figure
shows the comparison of the measured and estimated diffraction patterns. The update frequency
of the plots can also be controlled by users (Monitor.figureUpdateFrequency).

The Params class holds parameters that determine how a reconstruction is performed, for
instance whether a reconstruction is carried out on a CPU or a GPU, the propagator type
such as Fraunhofer, Fresnel, (scaled) angular spectrum (ASP, scaledASP), etc., and
whether the order of position iterations is random or sequential. Switches and parameters of
various regularization types are also included in the Params instance, for example controlling
how frequenctly orthogonalization is applied in the context of a mixed-states reconstruction.

The Engine class consists of a BaseEngine as a parent class, and other child engine
classes, for instance ePIE [43], mPIE [47], zPIE [39], aPIE [40], and qNewton [81]. All
four instances of ExperimentalData, Reconstruction, Params, and Monitor
are taken as inputs for a chosen engine, then get modified/updated by the engine, and can be
passed to a different engine easily. Each engine stores its own attributes such as the number of
iterations (numIteration), and the update step sizes for the probe/pupil (betaProbe) and
object (betaObject).

3.4. Julia structure

PtyLab.jl is the most recent translation of PtyLab to Julia. Due to the differences in Julia
to Matlab and Python consequently small differences exist in the implementation but most
of the common principles still hold. The amount of features is less than in the other two
packages since its focus was on performance first. The basis are four main types Experi-
mentalData, Reconstruction, Params, and Engines. Engines is an abstract type which is
subtyped (indicated by <:) by specific algorithms (such as ePIE <: Engines) as com-
posite types. Via this mechanism, generic functions can be commonly used by all Engines
solvers. However, Julia’s multiple dispatch allows that different functionalities can be spec-
ified if they belong to a ePIE or a zPIE solver. Params is a composite type storing
second-order-properties. Further, ExperimentalDataCPM <: ExperimentalData
exists and similarly ReconstructionCPM <: Reconstruction to store the experi-
mental data and the reconstruction data. During the iteration of the algorithms, the fields of
ReconstructionCPM are allowed to change. Julia’s language features allow for a functional
style of programming implying that memory buffers are not explicitly exposed to the user but
instead are implicitly stored via closures.
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4. Inverse modeling

The inverse modeling workflow in PtyLab consists of several modular processing steps, which are
shown in Fig. 5. All optimization algorithms in PtyLab iterate between the object (CP) / object
spectrum (FP) plane (orange) and the detector plane (green), where the two planes are linked via
a suitable propagation model (yellow). We subdivide this section into several parts, describing
the individual modules that the user can stack up to build customized data analysis pipelines.

Fig. 5. Optimization workflow. The schematic illustrates the building blocks of a user-
defined reconstruction routine in PtyLab. In the object plane, the forward exit wave model as
well as the inverse model for the object and probe gradients, subject to several regularization
options, are specified. In the detector plane, the underlying noise model and various
regularization options lead to an optimal update for the estimated detector wave. After
initialization of the object and probe, the reconstruction engine iterates between the object
and detector plane until the reconstruction error is low or other stopping criteria are satisfied.

4.1. Forward model

In CP and FP the goal is to retrieve a wide-field high-resolution reconstruction of a sample of
interest. In addition, the probe (CP) and pupil (FP) of the imaging system are recovered. A
forward model links the estimated detector intensity I to the object O and probe P (CP) or object
spectrum Õ and pupil P̃ (FP),

Ij (q) =
|︁|︁Dr→q

[︁
P (r) · O

(︁
r − rj

)︁ ]︁ |︁|︁2 (CP)

Ij (r) =
|︁|︁|︁Dq→r

[︂
P̃ (q) · Õ

(︂
q − qj

)︂]︂ |︁|︁|︁2 (FP).
(1)

Here D describes wave propagation between the sample (CP)/pupil (FP) and the detector
plane, r refers to spatial coordinates, and q refers to reciprocal space coordinates. The index
j = 1, . . . , J denotes scan position. For simplicity, we drop the coordinate dependence and use
the CP notation throughout; the conversion to FP of all results discussed below is straightforward.
The symbol O refers to a particular object box of equal size as the probe FOV (compare red



Research Article Vol. 31, No. 9 / 24 Apr 2023 / Optics Express 13774

region in Fig. 2). The entire object field of view is denoted by OFOV (compare blue region in
Fig. 2).

In the presence of noise in the observed signal, for instance caused by photoelectric conversion
and read-out, we cannot expect to find a combination of sample and prope/pupil that exactly
matches the recorded data. In what follows we therefore assume the measured data m to arise as a
probabilistic response to the true intensity I incident on the detector and discuss several maximum
likelihood estimation (MLE) models [48,55,81–84]. These MLE models aim at estimating the
most likely combination of object and probe, a viewpoint extended by the addition of maximum
a posteriori (MAP) estimation, which originates from a Bayesian viewpoint and enables flexible
embedding of regularization into the forward model [48,84,85]. Before going into the details of
inverse models, we briefly review the continuous and discrete viewpoints on optimization, which
are both encountered in the ptychography optimization literature [45,47,48,55,81–84,86–88].

4.2. Inverse modeling

In this section we review various forward models implemented in PtyLab. A summary of these
forward models is given in Fig. 6. We first describe general techniques to tackle the inverse
problem underlying ptychography. Subsequently, we detail the individual solvers that allow the
user to build and invert modular forward models.

4.2.1. Continuous viewpoint

In the continuous viewpoint, we aim to minimize a cost functional

C =
∫

C (r, f (r) , g) dr, (2)

where the functional density C is a real-valued, non-negative and at least once differentiable
function. We use the abbreviation g = ∇f (r) for notational brevity in the equations to follow.
For real-valued functions f minimizing the cost functional C is equivalent to solving the
Euler-Lagrange equation [89]

∂C

∂f
− divg

(︃
∂C

∂g

)︃
= 0, (3)

where divg is the divergence with respect to the third (vector-valued) input of C. For complex-
valued f , we may solve two separate Euler-Lagrange equations for the two degrees of freedom
of f , for instance its real and imaginary parts. We can save some work if we regard f and its
complex conjugate f ∗ as the degrees of freedom to solve for [63,90]. In the particular case that
the cost density C is symmetric, i.e.

∂C (r, f , g)
∂f ∗

=

(︃
∂C (r, f , g)

∂f

)︃∗
, (4)

it suffices to solve a single Euler-Lagrange equation [62]

∂C

∂f ∗
− divg

(︃
∂C

∂g∗

)︃
= 0. (5)

If Eq. (5) is not amenable to a direct solution, we can iteratively solve it by seeking the steady
state solution of the diffusion equation [91,92]

∂f
∂t
= −α

[︃
∂C

∂f ∗
− divg

(︃
∂C

∂g∗

)︃]︃
, (6)
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Fig. 6. Selection of forward models implemented in PtyLab: (a) The basic coherent
diffraction model assumes the thin element approximation (TEA), where the exit wave
ψj is modeled as a product of probe P and object box Oj a scan position j. The exit
wave is propagated into the detector plane via a suitable propagator D. (b) In mixed state
ptychography the object interacts with k mutually incoherent probe modes, giving rise to
independent exit waves ψj,k. These exit waves are propagated into the detector plane and
incoherently added to form the intensity forward model. (c) Multispectral ptychography.
Here a polychromatic probe interacts with a dispersive object, both of which are functions
of wavelength Λ. (d) In multislice ptychography the exit wave is modeled using the beam
propagation method (BPM), which models a three-dimensional object to consist of several
two-dimensional slices (index s). Inside each slice the TEA is used, while the propagation
between slices is carried out via angular spectrum propagation A. (e) Orthogonal probe
relaxation can model scan position dependent probes Pj as a linear combination of mutually
coherent orthogonal basis modes Uk. (f) A coherent external reference wave can be added
to the forward model.
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where α controls the diffusion step size. Approximating the time derivative by finite differences,
we may rewrite Eq. (6) as

fk+1 = fk − α
[︃
∂C

∂f ∗k
− divgk

(︃
∂C

∂g∗k

)︃]︃
, (7)

where k denotes iteration. We refer to this update as functional gradient descent. Under some
circumstances to be discussed below the divergence term vanishes. In this case we identify this
update with the Wirtinger derivative previously discussed in [48,93,94]. However, we will make
use of regularizers which require this more general update rule.

4.2.2. Discrete viewpoint

The discrete viewpoint is used when considering inverse problems over sampled functions. In
this case, we oftentimes wish to minimize the sum of squares cost function

C =
∑︂

k
λk

∥︁∥︁Akf − ψ̃k
∥︁∥︁2

2 , (8)

where ∥. . .∥2 denotes the L2 norm. Here Ak is a matrix and f is a vector, which are compatible
in dimensions. The gradient to this problem is given by [95]

∂C

∂f ∗
=

∑︂
k
λkA†

k
(︁
Akf − ψ̃k

)︁
, (9)

where the matrix A†

k is the conjugate transpose of Ak. We may iteratively solve the original
problem in Eq. (8) using gradient descent

fn+1 = fn − α
∑︂

k
λkA†

k
(︁
Akf − ψ̃k

)︁
. (10)

A non-iterative solution is formally obtained by setting the gradient in Eq. (9) to zero and
solving for f ,

f =

(︄∑︂
k
λkA†

kAk

)︄−1 (︄∑︂
k
λkψ̃k

)︄
, (11)

which is referred to as the least squares solution. We note that the transition between the continuous
and discrete viewpoints is seamless, provided that the signals of interest are bandlimited. In this
case one may switch between the continuous and discrete viewpoints by adequate sampling and
interpolation [96].

4.3. Maximum likelihood (MLE) estimation

We now discuss models for the detector noise commonly used in ptychography. Two particularly
prominent models that have been addressed [48,55,81–83] are the Poisson likelihood

p [m |I ] =
(I + b)m+b

(m + b)!
exp [− (I + b)] (shifted Poisson) (12)

and the Anscombe likelihood

p [m |I ] = exp
[︃
−

(︂√
m + b −

√
I + b

)︂2
]︃

(Anscombe), (13)

where I = ψ̃∗ψ̃ is the estimated intensity, , ψ̃ = D (P · O) (CP, cf. Equation (1); similarly for
FP), and m is the measured intensity. In both cases, the offset term b is typically not made
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explicit in the literature, although needed to prevent division by zero in the maximum likelihood
gradients (cf. Equations (14) and (15)). In case of the Poisson likelihood the additional term
b has previously been used to account for detection models that contain mixed Poissonian and
Gaussian noise contributions and is also referred to as the shifted Poisson approximation [97–99].
The Anscombe model transforms Poisson-distributed data, which exhibits exposure dependent
shot noise, into variance-stabilized data with uniform uncertainty across variable exposure, which
is the basis for robust denoising [100]. However, while the Anscombe transform has been noted
to stabilize variance, it can introduce bias and tends to underestimate the true mean of the signal
in the limit of low exposure [101]. We recommend setting the offset to at least b = 1 to prevent
division by zero in the gradient descent update rules derived below.

Computing the Wirtinger derivatives of the negative log-likelihood L = −
∑︁

q log (p [m |I ]) of
Eqs. (12) and (13) results in [48,55,81,83]

∂L

∂ψ̃∗
=

(︃
1 −

m + b
I + b

)︃
ψ̃ (shifted Poisson gradient) (14)

and
∂L

∂ψ̃∗
=

(︄
1 −

√︃
m + b
I + b

)︄
ψ̃ (Anscombe gradient). (15)

It appears to us that the Anscombe forward model is used by the vast majority in the
ptychography literature. Although the Poisson distribution works in practice, we have observed
that the Anscombe model is more robust in practical data analysis. One has to keep in mind that
the Poisson model assumes that the photoelectric counting distribution’s mean equals its variance
and is only valid for shot-noise limited data - a somewhat restrictive assumption considering
the manifold fluctuations that are present in typical experiments, including partial spatial and
temporal coherence effects as well as detector read out. We note that other models for the
statistics of photoelectic counting distributions have been proposed in the literature, albeit to our
knowledge they not yet have been used for ptychography. Noteworthy is the negative binomial
distribution

p [m |I ] =
(m +M − 1)!
m! (M − 1)!

·
Im · MM

(I +M)m+M , (negative-binomial) (16)

which was first derived by Mandel [102]. The parameter M counts the degrees of freedom in the
detected light. For an integration time T much longer than the coherence time τc the degrees
of freedom can be estimated as M = T/τc [103]. Notice that this number does not have to be
an integer and one can simply replace the factorials in Eq. (16) by gamma functions. However,
leaving the factorials it is easy to see that for large M the negative binomials approximately
equals a Poisson distribution. In the other extreme case that M = 1, the negative binomial
distribution degenerates into a geometric distribution, which is the noise distribution for thermal
light measured at time scale approaching the coherence time [102]. Thus by varying M one can
parameterize between the degree to which the Poisson model is relaxed. The gradient of the
negative log-likelihood of the negative binomial distribution is given by

∂L

∂ψ̃∗
=

[︃
m +M
I +M

−
m
I

]︃
ψ̃, (negative-binomial gradient) (17)

which has the desired property that it vanishes for I = n, similar to Eqs. (14) and (15). For large
M the first fraction approaches one and we recover the Poisson gradient (compare Eq. (14)). It is
an interesting possibility left for future studies to test the performance of a generalized Anscombe
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gradient of the form

∂L

∂ψ̃∗
=

[︄√︃
m +M + b
I +M + b

−

√︃
m + b
I + b

]︄
ψ̃, (generalized Anscombe gradient) (18)

which results from taking the square root of the fractions in the negative-binomial gradient. In
the limit of large M the latter gradient approaches the Anscombe gradient.

4.4. Maximum a posteriori (MAP) estimation

The MLE approach in the previous subsection can be extended by MAP estimation, which
introduces prior knowledge into the reconstruction process. In MAP the detector intensity is
regarded as a random variable with underlying probability density p [I]. Since the detector
intensity I = ψ̃∗ψ̃ is a function of the real space object and probe, namely ψ (r) = P (r) ·O

(︁
r − rj

)︁
and ψ̃ (q) = Fr→q [ψ (r)], MAP opens up a convenient way to formulate and impose constraints
in the inverse problem underlying ptychography. The optimization problem is then

argmaxP,O

∏︂
q

p [m (q) |I (q) ] p [I (q)] , (19)

which is equivalent to

argminP,O

∑︂
q

− log (p [m (q) |I (q) ]) − log (p [I (q)]) . (20)

4.4.1. Proximal detector updates

The detector update can be restricted to small step sizes by introducing the proximal prior

p [I] = exp

[︄
−λ

(︃√︂|︁|︁ψ̃n+1
|︁|︁2 − √︂|︁|︁ψ̃n

|︁|︁2)︃2
]︄

, (proximal prior) (21)

where λ controls how strong changes in the magnitude of the estimated detector wave are
penalized between successive iterations n and n + 1. Inserting this into Eq. (20) together with the
shifted Poisson (Eq. (12)) and Anscombe (Eq. (13)) likelihood, we get the cost functions

C =
|︁|︁ψ̃n+1

|︁|︁2 − m · log
(︂|︁|︁ψ̃n+1

|︁|︁2)︂ + λ (︃√︂|︁|︁ψ̃n+1
|︁|︁2 − √︂|︁|︁ψ̃n

|︁|︁2)︃2
(proximal Poisson) (22)

and

C =

(︃√︂|︁|︁ψ̃n+1
|︁|︁2 − √

m
)︃2
+ λ

(︃√︂|︁|︁ψ̃n+1
|︁|︁2 − √︂|︁|︁ψ̃n

|︁|︁2)︃2
. (proximal Anscombe) (23)

These updates are referred to as proximal. A large value of the tuning parameter λ forces the
updated wave ψ̃n+1 to remain in the proximity of the previous estimate ψ̃n. Intuitively, the updates
along the gradient directions in Eqs. (14) and (15) enforce the magnitude of the updated wave
to be equal to the measured data, either in intensity or modulus for the Poisson and Anscombe
gradients, respectively. However, due to noise, sequential update schemes can only be as certain
as the noise in a single diffraction pattern permits. Proximal gradients incorporate the memory
of previous updates and do not naively accept the update suggested by the data. The gradient
direction suggested by the data is followed in case that the deviation from the current estimate is
small. It is conjectured here that this incorporates dose fractionation effects into ptychography,
resulting in superior signal-to-noise in the reconstruction. This is supported by previous reports
that observed improved reconstruction quality using proximal gradients for Gerchberg-Saxton
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type phase retrieval [104] and ptychography [84,87]. The cost functions above (Eqs. (22) and
(23)) result in the update steps

ψ̃n+1 =
m + λ

|︁|︁ψ̃n
|︁|︁2

(1 + λ)
|︁|︁ψ̃n

|︁|︁2 ψ̃n (proximal Poisson update), (24)

and

ψ̃n+1 =

√
m + λ

|︁|︁ψ̃n
|︁|︁

(1 + λ)
|︁|︁ψ̃n

|︁|︁ ψ̃n. (proximal Anscombe update). (25)

We note that the proximal Poisson update is different from the result in [104], since here the
prior is Gaussian in modulus, while in the related work the prior is Gaussian in intensity. The
approach reported here avoids the need to solve a cubic polynomial to compute the proximal
Poisson update.

4.4.2. Proximal probe and object updates via (e)PIE

While in the previous section a proximal update step has been discussed in the detector update
step, we may impose a similar type of regularization for the probe and object update, which
has been shown to result in the ptychographic iterative engine (ePIE) [45]. This derivation is
reviewed here from the discrete viewpoint outlined above. Considering the cost function

C =
∥︁∥︁AOn+1 − ψ̃

∥︁∥︁2
2 + α ∥ΓOn+1 − ΓOn∥

2
2 , (26)

the first term is the overlap constraint of ptychography while the second penalizes the step size
in the search direction for the object O, which here is a vector. The operator matrix A = DP

contains both the propagator D and a diagonal probe matrix P, which act on the object. The
matrix Γ allows for regularization of the object. The detector wave ψ̃ is the obtained from the
detector update step, as described in the previous subsections, where we have omitted an index to
focus on the update of the object. Noting that A†A = P†D†DP = P†P, application of the
least square solution in Eq. (11) results in

On+1 =
(︂
A†A + αΓ†Γ

)︂−1 (︂
A†ψ̃ + αΓ†ΓOn

)︂
=

(︂
A†A + αΓ†Γ

)︂−1 (︂
A†ψ̃ − A†AOn +A

†AOn + αΓ
†
ΓOn

)︂
=

(︂
A†A + αΓ†Γ

)︂−1
A†

(︁
ψ̃ − AOn

)︁
+ On

=
(︂
P†P + αΓ†Γ

)︂−1
P†

(︂
D†ψ̃ − POn

)︂
+ On.

(27)

The particular choice

ΓPIE = diag

[︄(︃
max (|P|)
αβ |P|

(︂
|P|2 + ϵ

)︂
−

|P|2

α

)︃1/2]︄
(28)

results in the original version of the ptychographic iterative engine (PIE) [1,105], namely

On+1 = On + β
|Pn |

max (|Pn |)

P∗
n

|Pn |
2 + ϵ

(ψ − Pn · On) . (29)

Later the extended ptychographic iterative engine (ePIE) was proposed [43], which uses the
regularization matrix [45]

ΓePIE = diag

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎝

max
(︂
|P|2

)︂
αβ

−
|P|2

α

⎞⎟⎟⎠
1/2⎤⎥⎥⎥⎥⎥⎦ , (30)
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resulting in the ePIE update [43]

On+1 = On + β
P∗

n

max |Pn |
2 (ψ − PnOn) . (31)

An intuition of the difference between PIE and ePIE can be obtained in the limit of ϵ → 0 and
β = 1, for which we get

ΓPIE = diag

[︄(︃
|P|2

α

(︃
max (|P|)

|P|
− 1

)︃)︃1/2]︄
(32)

and

ΓePIE = diag

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎝

max
(︂
|P|2

)︂
α

−
|P|2

α

⎞⎟⎟⎠
1/2⎤⎥⎥⎥⎥⎥⎦ . (33)

ΓPIE is small, when |P| approaches max (|P|) or 0. Thus PIE allows object updates for locations
where the probe amplitude is small or large. In contrast, ΓePIE is small, only when |P| approaches
max (|P|). Thus ePIE allows object updates only for locations where the probe amplitude is large.
The derivation of the probe update is similar, resulting in a joint optimization of P and O. The
robustness of ePIE is attributed to the penalized step size at low probe intensities. However, in FP
the large dynamic range of the object spectrum can cause problems in conjunction with ePIE. The
pupil would be updated only in the center of k-space, where the object spectrum exhibits values
close to its maximum amplitude. High illumination angles produce dark field images, which
have a reduced signal-to-noise ratio as compared to bright field images from lower illumination
angles. In CP the illuminating beam is always aligned with the detector resulting in images with
similar signal-to-noise ratio as compared between scan positions. For this reason, we use the
PIE-type update by default in PtyLab for FP and the ePIE-type update for CP data analysis. Other
choices of regularization can be embedded into the reconstruction routine by changing the weight
matrix Γ. We note in passing that the PIE-type update rule has been identified as a quasi-Newton
algorithm [81].

4.4.3. Tikhonov regularization

A popular idea in solving inverse problems is Tikhonov regularization. The general idea is to add
an additional term to the cost function, which penalizes variations in the object,

C = |P · O − ψ |2 + λ
|︁|︁∇x,yO

|︁|︁2 . (34)

We emphasize that the regularization term in Eq. (26) in the previous subsection penalizes
fluctuations at for a fixed object pixel between successive iterations. In this subsection the
regularization term in Eq. (34) penalizes fluctuations between neighboring object pixels. Applying
functional gradient descent, as described by Eq. (7), to the cost in Eq. (34) gives

On+1 = On − αP∗ (ψ − P · On) + αλ∆On, (35)

where
∆On =

∂2On

∂x2 +
∂2On

∂y2 = −F −1
(︂ [︂
(2πqx)

2 +
(︁
2πqy

)︁2
]︂
F (On)

)︂
(36)

is the Laplacian. Subtracting the Laplacian in Eq. (35) removes high-frequency components
from the object. Thus introducing Tikhonov regularization results in a low-pass filter smoothing
the object [48,49]. While the smoothing operation is effective in preventing noise in the object
reconstruction, it results in unwanted loss of high resolution features in the reconstruction. An
alternative regularization with more favorable edge preservation properties is discussed in the
next subsection.
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4.4.4. Total variation regularization

Total variation (TV) regularization penalizes changes in the image while to a certain degree
preserving edge features [91]. The corresponding cost function can be approximated by

C = |P · O − ψ |2 + λ

√︂
|∇O|2 + ϵ . (37)

Applying functional gradient descent (Eq. (7)) gives

On+1 = On + αP∗ (ψ − P · On) + λ div
⎛⎜⎜⎝

∇On√︂
|∇On |

2 + ϵ

⎞⎟⎟⎠ , (38)

where div denotes divergence. Equation (38) is applied to the complex-valued object. Alternative
implementations [20] have reported application of a TV prior to the real and imaginary part of
the object separately, which is not equivalent to our implementation due to the nonlinearity of the
TV regularizer.

4.5. Momentum acceleration (mPIE and mqNewton)

The momentum-accelerated ptychographic iterative engine (mPIE) [47] is the standard solver
used for CP in PtyLab. In mPIE a predefined number of ePIE iterations T is carried out, after
which the search direction is complemented by a momentum term ν updating the entire object
field of view OoFOV,

νn = η · νn−T + On,oFOV − On+1−T ,oFOV (39)
On+1,oFOV = On,oFOV + η · νn. (40)

Here η is a damping term that is set to 0.7 by default [47]. Similar to conjugate gradient solvers
[48,55,106], the momentum term accelerates the search direction and prevents zigzag motion
towards the optimum. We emphasize that On+1,oFOV in this subsection denotes the entire probe
field of view, while in other subsection O is an object box of the same size as the probe window.

While addition of momentum is typically done for another regularized version of the PIE-type
family of algorithms (rPIE, see [47]), it can complement any of the existing reconstruction
engines including PIE. To avoid naming ambiguities, addition of momentum to PIE will be
referred to as momentum accelerated quasi-Newton (mqNewton), which we often use as an FP
solver.

5. Robust inverse models

In the foregoing section, we have reviewed the basic inverse models underlying ptychography.
However, oftentimes a variety of systematic errors are present in the experimental data that
requires more robust inverse models. This is the case when the data is corrupted by for example
partial spatial as well as partial temporal coherence, when the illumination wavefront profile
is unstable throughout the scan, and when the scan positions are imprecisely known. In what
follows, we discuss robust forward models that account for and mitigate the aforementioned
sources of error.

5.1. Mixed States

In mixed state ptychography [45] the intensity in the detector plane is modeled as

I =
∑︂

k
ψ̃∗

k ψ̃k, (41)

where the index k discerns mutually incoherent signal contributions (also known as mixed states).
Inserting this into Eqs. (12) and (13) and calculating the Wirtinger derivative with respect to
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each ψ̃k, we get the gradients
∂L

∂ψ̃∗
k
=

[︃
1 −

(︃
n + b
I + b

)︃p]︃
ψ̃k, (42)

where p = 1 for the Poisson model and p = 1/2 for the Anscombe model.
The real space cost function for mixed state ptychography is

C =
∑︂

k

|︁|︁Pn+1,k · On − ψk
|︁|︁2 + λP

∑︂
k

|︁|︁Pn+1,k − Pn,k
|︁|︁2 + λO |On+1 − On |

2 , (43)

where the particular choices λP =
1
β max |On |

2 − |On |
2 and λO =

1
β max

(︂∑︁
k
|︁|︁Pn,k

|︁|︁2)︂ −∑︁
k
|︁|︁Pn,k

|︁|︁2
and setting the Wirtinger derivatives with respect to Pn+1 and On+1 to zero lead to

Pn+1,k = Pn,k +
β

max |On |
2 O∗

n
(︁
ψk − Pn,k · On

)︁
(44)

On+1 = On +
β

max
(︂∑︁

k
|︁|︁Pn,k

|︁|︁2)︂ ∑︂
k

P∗
n,k

(︁
ψk − Pn,k · On

)︁
, (45)

which is a modified version of ePIE for the case of mixed states, as first derived in [45]. In PtyLab
a snapshot singular value decomposition [80] is used to orthogonalize the probe states during the
reconstruction process, which allows for their interpretation as orthogonal modes of the mutual
intensity of a partially coherent field provided that other decoherence effects are absent in the
experimental data [107,108]. It is noteworthy that multiple object states can be reconstructed as
well [45], provided the illumination is fully coherent, which otherwise leads to ambiguities [109].

5.2. Multispectral ptychography

In multispectral ptychography [41,46,110–115] a light source of multiple individual spectral lines
or a continuous spectrum is used. Because different colors are mutually incoherent, the detector
update is identical to mixed state ptychography (compare Eq. (42)), but the index k now denotes
wavelength instead of spatial mode. The differences between mixed state and multispectral
ptychography lie in the real space updates and in the propagator between the sample and the
detector plane. In PtyLab we minimize the following cost function

C =

K∑︂
k=1

|︁|︁Pn+1,k · On,k − ψk
|︁|︁2 + K∑︂

k=1
λP,k

|︁|︁Pn+1,k − Pn,k
|︁|︁2 (46)

+

K∑︂
k=1

λO,k
|︁|︁On+1,k − On,k

|︁|︁2 + µ K−1∑︂
k=2

|︁|︁2On+1,k − On,k+1 − On,k−1
|︁|︁2 (47)

where µ is a user defined parameter that enforces similarity between adjacent spectral reconstruc-
tions and

λP,k =
1
β

max
|︁|︁On,k

|︁|︁2 − |︁|︁On,k
|︁|︁2 (48)

λO,k =
1
β

max
|︁|︁Pn,k

|︁|︁2 − |︁|︁Pn,k
|︁|︁2 . (49)

These cost functions result in the updates

Pn+1,k = Pn,k +
β

max
|︁|︁On,k

|︁|︁2 O∗
n
(︁
ψk − Pn,k · On

)︁
(50)
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On+1,k =
γ

γ + 2µβ
On,k +

βP∗
n,k

(︁
ψk − Pn,k · On,k

)︁
+ βµ

(︁
On,k+1 + On,k−1

)︁
γ + 2µβ

, (51)

where γ = max
|︁|︁Pn,k

|︁|︁2. At the boundaries of the spectral range (k = 1 and k = K) the object
updates are carried out without influence from adjacent spectral channels,

On+1,k = On,k +
β

max
|︁|︁Pn,k

|︁|︁2 P∗
n,k

(︁
ψk − Pn,k · On,k

)︁
. (52)

The latter update also results for the special case µ = 0. In this case the spectral channels are
only coupled by the incoherent model for the detector intensity (Eq. (41)). In the presence of
spectral regularization (µ ≠ 0) we do not need a priori knowledge about the spectral weights of
the incident beam [41]. In the original work proposing multispectral ptychography no spectral
regularization of adjacent channels was used. Instead the spectrum of the incident polychromatic
probe was known a priori and used as a constraint in the optimization routine [46].

The second difference between mixed state and multispectral ptychography is the propagation
model. Other code projects, for instance PtyPy [54], use zero padding to model the wavelength
dependence of far-field wave propagation. In PtyLab the pixel size of a monochromatic wave
can be scaled by using two-step propagators (scaledASP), which omits the need for spectrally
dependent zero padding of the exit wave. For details the reader is referred to the supplementary
information of [41].

5.3. Multislice ptychography (e3PIE)

In multislice CP [44] the specimen is modeled by a stack of 2D slices. The beam propagation
method (BPM) [116] is used as a forward model for the exit wave. In each of the slices the thin
element approximation is assumed to be valid. The cascade of multiplication with each slice and
subsequent propagation enables the BPM to model multiple forward scattering effects. A basic
version of multislice CP (termed e3PIE) is implemented in PtyLab. For details, the reader is
referred to the original work by Maiden et al. [44] and subsequent work [117,118]. We have not
yet implemented multislice FP [119] in the current version of PtyLab, although such an enigine
may come in future releases.

5.4. Orthogonal probe relaxation (OPR)

A basic version of orthogonal probe relaxation (OPR) [51] is implemented in PtyLab. Instead of
sharing the same probe across all scan positions in CP, as done for example in simple engines
such as ePIE, OPR relaxes the requirement for a stable probe. The exit waves from different
scan positions are used to estimate a low-rank basis, which seeks to model probe variations that
occurred during a full scan, for example caused by pointing instability of the source. For details,
the reader is referred to the original work by Odstrcil et al. [51]. We note that OPR can be
combined with mixed states, as recently described by Eschen et al. [21].

With regard to FP, to our knowledge OPR has not been applied, although this may be an
interesting approach to effectively model space-variant pupil functions. The latter is typically
achieved by partitioning a larger field of view into a set of smaller sub-regions, each of which
may be subject to different pupil aberrations. This approach, known as embedded pupil recovery
(EPRY) [28], has to date essentially remained the only model for space-variant pupil aberrations
in FP. However, because EPRY requires the reconstruction of a separate pupil for each sub-region,
the model requires many degrees of freedom and ignores that adjacent sub-regions are unlikely
to have strongly differing pupil aberrations. OPR could be a promising candidate to robustify
EPRY in future FP applications for spatially varying aberration reconstruction. An example of
the use of OPR in FP is shown in Fig. 7. The image FOV was split into small segments, each with
its own unique pupil function and OPR was used to impose a low-rank consistency constraint
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on all the pupil functions. In applying OPR to FP adjacent pupils share information and poor
convergence of some isolated field segments can be avoided (compare highlighted red boxes in
Fig. 7). For further implementation details the reader is referred to [120].

Fig. 7. (a) Orthogonal probe relaxation scheme in FP. In step 1, the reconstructed pupils at
a given iteration are factorized using SVD to produce an orthogonal full-field aberration
basis. In step 2, the low-rank representation is obtained by eliminating modes with low-
contributions to actual aberrations. This way, noise and errors are eliminated. In step 3, the
low-rank full-field aberration reconstruction is performed from the low-rank basis. In this
example, it can be seen that noisy pupils (top right corner) were replaced with a better pupil
estimate. The whole process ensures that pupil aberrations remain well conditioned. (b)
Experimental validation of pupil initialisation [120], where the use of OPR resulted in stable
pupil reconstruction at the corners (indicated by red boxes).

5.5. Subsampling (sPIE)

In some applications it is challenging to sufficiently sample the captured detector signal. For
example, in EUV ptychography generating a highly focused probe is oftentimes restricted by the
available hardware [19]. In other applications, such as near-field ptychography, the detector pixel
size can be a limiting factor [121]. In both situations one may attempt to solve for the probe and
object in CP (or the pupil and object spectrum in FP) from undersampled measurements, being
too coarse to oversample the diffraction data. In principle, the detrimental effect of undersampling
can be compensated by high overlap. In the context of CP this technique is known as reciprocal
space upsampling and was first demonstrated by Batey et al. [122] (where the algorithm was
named sPIE). In the latter work, the captured ptychography measurements were deliberately
undersampled by means of binning, but the original oversampled data could be recovered thanks
to the high scan grid overlap in the captured data. We later generalized this principle to arbitrary
sensing matrices that are not necessarily a result of an operation equivalent to binning, but that
could result from any sensing architecture that compresses multiple, not necessarily neighboring



Research Article Vol. 31, No. 9 / 24 Apr 2023 / Optics Express 13785

pixels into a smaller data cube [42]. In such situations one seeks to minimize the cost function

L =

∥︁∥︁∥︁∥︁√︂S
|︁|︁ψ̃|︁|︁2 − √

I
∥︁∥︁∥︁∥︁2

2
, (53)

where S is a sensing matrix representing, for example, downsampling or any other detection
scheme. Gradient descent on this cost function results in a modified intensity projection given by

ψ̃n+1 = ψ̃nST
√︄

I

S
|︁|︁ψ̃n

|︁|︁2 , (54)

where ST is the transpose of the sensing matrix. For the special case of S being a downsampling
operation ST is an upsampling operation (compare Fig. 8). In this case, Eq. (54) modifies the
estimated detector wave by multiplying it with the upsampled version of the ratio between the
measured intensity I (already downsampled) and the downsampled estimated intensity S

|︁|︁ψ̃n
|︁|︁2.

This principle was also used by Xu et al. who reported sub-sampled near-field ptychography [94].

Fig. 8. Illustration of sPIE in CP. Assuming a far-field diffraction geometry, the real and
reciprocal space sampling conditions are inversely proportional (indicated by the dashed
lines): A small probe field of view (pFOV) in CP requires only coarse detector pixels ∆q.
Conversely, if the physical probe wavefront extends over a larger region, the observed data is
undersampled (top row). In such situations, the detector pixels need to be sub-divided into
smaller pixels ∆q′ (bottom row). This allows to extend the numerical pFOV to be larger
than the physical probe size. The resulting constraint in the forward model is that the sum
over the intensities over a set S of sub-sampled pixels equals the corresponding observation
over the same region in the observed data with a coarse sampling grid.

5.6. Lateral position correction (pcPIE)

In ptychography the scan positions may not be accurately known, for example in the case of
a low-precision scanning stage [68,86,123,124]. The wrong estimation of the scan positions
will cause errors and artifacts during the stitching of the object patches into the large object
field of view. In PtyLab a momentum-accelerated version of a cross-correlation-based lateral
position correction algorithm is used [50]. The rationale of this position correction is based on
the observation that, at iteration n + 1 of the reconstruction procedure, the object patch estimate
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at scan position j is slightly shifted towards its true position. This shift is detected and used to
update the scan grid by maximizing the cross correlation

Cn,j(∆r) =
∑︂

r
O∗

n,j(r − ∆r) · On+1,j(r − ∆r) (55)

with respect to the shift ∆r. In practice, we shift the object patch of the iteration n one pixel in all
directions (horizontally, vertically and diagonally) and compute the centre of mass of the cross
correlation

∆n,j =

∑︁
∆r

(︂
|Cn,j(∆r)| −

⟨︁
|Cn,j(∆r)|

⟩︁ )︂
∆r∑︁

r
|︁|︁On,j(r)

|︁|︁2 , (56)

where the brackets ⟨. . .⟩ denote an average over all shift pixels, and then estimate the position
gradient dn,j using

dn,j = α · ∆n,j + β · dn−1,j (57)

The updated scan position at iteration n + 1 is

rn+1,j = rn,j − dn. (58)

Default values are α = 250, β = 0.9, and d0 = 0.

5.7. Reflection ptychography with angle calibration (aPIE)

In reflection ptychography the sample plane and the detector are non-coplanar. Assuming far-field
diffraction for simplicity, the captured data is related to the specimen exit wave by a Fourier
transformation plus an additional coordinate transformation [17,125]. An inverse coordinate
transformation can be applied to the captured raw data to simplify the forward model. However,
this operation requires accurate knowledge of the angle between the optical axis and the specimen
surface normal. If this angle is not calibrated within a fraction of a degree, the reconstruction
quality can suffer notably. We have recently presented an algorithm for angular auto-calibration
in reflection ptychography (aPIE), which is part of PtyLab. aPIE uses a heuristic strategy to
estimate the unknown angle within an iteratively shrinking search interval. For details the reader
is referred to [40].

5.8. Axial position correction (zPIE)

Similarly to pcPIE (position correction) and aPIE (angle correction in reflection ptychography)
another self-calibration algorithm provided as part of PtyLab is zPIE, which can be used to
estimate the sample-detector distance [39]. The main idea is that when the sample-detector
distance is miscalibrated, the reconstructed object oftentimes exhibits characteristics of a slightly
defocused inline hologram, including ringing at edges. An autofocus metric based on total
variation (TV) is then used to calibrate the correct sample detector distance. We observed that
TV-based autofocusing performs best in the near-field on binary specimens, although it can
also be used on biological specimens. Other choices of autofocusing metrics can easily be
implemented by the user, if the TV-based sharpness metric fails [126].

5.9. Ptychography combined with an external reference beam

We recently reported ptychographic optical coherence tomography, which combines full field
frequency-domain OCT with ptychography [25]. In the latter work there was no need for an
external reference wave, as common in OCT applications. Instead the reference was provided
from a direct surface reflection of the sample itself. Thus the technique can principally be
applied to the short-wavelength regime, where providing an external reference comes with extra
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experimental challenges. However, in the visible and infrared spectral range a reference wave is
readily provided and can make POCT more convenient. Providing an external reference wave in
ptychography requires adjustments to the forward model. In this case, we seek to minimize the
cost function density

L =

[︃√︂|︁|︁ψ̃ + ρ̃|︁|︁2 − √
I
]︃2

, (59)

where ρ̃ denotes a coherent external reference wave. All other quantities are the same as defined
as in previous sections. Using gradient descent with a unit step size in conjunction with Wirtinger
derivatives, we obtain updates for both the wave diffracted from the specimen

ψ̃n+1 =
(︁
ψ̃n + ρ̃n

)︁ √︄ I|︁|︁ψ̃n + ρ̃n
|︁|︁2 − ρ̃n (60)

and the external reference wave

ρ̃n+1 =
(︁
ψ̃n + ρ̃n

)︁ √︄ I|︁|︁ψ̃n + ρ̃n
|︁|︁2 − ψ̃n. (61)

We note that the mathematical structure of external reference beam ptychography opens up
a trivial ambiguity. Suppose that the triplet of probe P, object O, and reference ρ̃ yields the
observed intenisty I, i.e.

I =
|︁|︁ψ̃ + ρ̃|︁|︁2 = |F (P · O) + ρ̃|2 = |F (P) ⊗ F (O) + ρ̃|2 . (62)

Then it immediately follows that the triplet of probe P, object −O, and reference P̃ + ρ̃ is also
a solution, since |︁|︁ψ̃ + ρ̃|︁|︁2 = |F (P · [1 − O]) + ρ̃|2 (63)

=
|︁|︁P̃ + F (P) ⊗ F (−O) + ρ̃

|︁|︁2 (64)

=
|︁|︁F (P) ⊗ F (−O) + P̃ + ρ̃

|︁|︁2 (65)

= |F (P) ⊗ F (Otwin) + ρ̃twin |
2 , (66)

where ⊗ denotes convolution and we defined the twin object Otwin = −O as well as the twin
reference ρ̃twin = P̃ + ρ̃. P and P̃ denote the probe and its Fourier transform, respectively. An
analog argument holds for near-field diffraction geometries, where an additional quadratic phase
envelope in the probe enters the math. It is thus seen that the twin object and the twin reference
wave explain the same observed interferograms as the true object and reference. To avoid this
ambiguity, a separate measurement of the reference wave (with the wave from the specimen
blocked) can be carried out or a priori knowledge about the specimen can be provided (for
example knowledge about the specimen being transparent in certain regions such as an empty
microscopy slide).

6. Scan grid optimization

In CP, a certain amount of consideration is needed to optimize the scan trajectory. To date, the
majority of CP setups employ mechanical scanners, although variants exist where the beam is
rapidly steered over the sample by means of galvo mirrors [127]. The latter offers advantages
in terms of speed and overall cost of the experimental setup, but the isoplanatic illumination
patch of such mirror systems is finite and thus limits the field of view over which the probe
wavefront can be assumed to be stable, thus compromising one of the very benefits of CP. Hence
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mechanical scanners are still the preferred option. For such systems it is important to minimize
the total scan distance in order to reduce scan time and prevent mechanical wear. In addition,
unlike other scanning microscopy systems ptychography requires non-periodic scan grids to
avoid ambiguities in the reconstruction [128]. A popular choice are Fermat scan grids [129], as
depicted in Fig. 9(a). This type of scan grid is conveniently described in polar coordinates, where
its trajectory assumes the form of a spiral. Minimizing to total travel path can be done using a
solver for the traveling salesman problem (TSP). In PtyLab, we use a 2opt [130] TSP heuristic
solver, which offers a good compromise between optimality and optimization time. Figure 9(b)
shows an example of a distance-optimized scan trajectory, where the color scale indicates the
start (blue) and end position (red).

Fig. 9. A variety of scan grids can be generated and optimized in PtyLab. (a) The typical
workflow is to generate an aperiodic scan grid in polar coordinates, here a Fermat grid, and
subsequently preprocessing steps on it. (b) The total path of the scan trajectory is minimized
by solving the traveling salesman problem. In some cases, morphological operations to scan
grids are useful, such as non-uniform scaling (c) and rectification (d). (e) Another useful
technique is checkpointing, where the same scan point is revisited during a long scan. In
panel (e) a Fermat grid with 200 scan points plus 20 checkpoints is shown, which are equally
spaced in time. (f) For large scan grids an overlapping k-means (OKM) algorithm can be
used to partition the scan grid into overlapping clusters and subsequently process each cluster
separately. The overlap between clusters is required to synchronize phase information, which
can otherwise differ by a global offset, and for stitching a large-field-of-view image.

Moreover, several operations are available to transform scan grids, including non-uniform
scaling and rectification as shown Fig. 9(c) and (d), respectively. The former allows for non-
uniform spatial sampling, adjusted such that the sampling is higher in regions that are challenging
to resolve, while the latter clips the field of view to a rectangular (here square) region. Another
practically useful strategy is checkpointing (see Fig. 9(e)), which alters a given scan grid such that
it revisits a certain reference point throughout the scan. Deviations in the diffraction data at the
checkpoints allow for identifying sources of error in the experimental setup, including position
drift, flux instability, and illumination wavefront variations. The checkpoints are equi-spaced in
time.

The aforementioned techniques are primarily scan grid preprocessing techniques, meaning
that the scan grid is optimized prior to the actual experiment. After the data acquisition, scan
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grid postprocessing techniques may be required. For example, large scan grids can be partitioned
to prevent memory limitations. In this way large data sets may be chopped up into smaller pieces
which are then individually processed [131]. It is important that the scan partitions spatially
overlap, so that adjacent regions can be phase synchronized and stitched up post-reconstruction.
To ensure overlap between the clusters, an overlapping k-means (OKM) algorithm can be used
[132,133]. Figure 9(f) shows an example of a scan grid partitioned into four overlapping clusters
(filled circles/triangles, unfilled diamonds/squares), each containing 160 scan points. In the
middle, the clusters overlap. A second reason for scan grid partitioning can be to define batch
gradients which speed up convergence and robustness [55].

As a note on FP scan grids, at first sight it appears surprising that the technique does not
exhibit raster scan artefacts although the most commonly employed LED arrays are typically
regularly spaced. However, the typically regular LED spatial arrangement still corresponds to a
non-periodic spacing in angle, which explains that it is not subject to the aforementioned raster
scan artefacts. While most of the aforementioned preprocessing steps are not required for FP due
to the absence of mechanical movement, checkpointing and partitioning may still be used for
monitoring stability and distributed data analysis, respectively.

7. Open experimental data and tutorials

We publish a variety of CP and FP data sets and tutorials with the aim to introduce users to the
functionality of PtyLab. Figure 10 depicts two such data sets. The top row shows a soft x-ray
(λ = 2.48nm) data set collected at a synchrotron (experimental details in [76]). The bottom
row depicts a visible light (λ = 625nm) FP data set of lung carcinoma. For both data sets we
show from left to right a single frame of the raw data, the recovered quantitative phase image

Fig. 10. Examples of CP and FP experimental data analyses using PtyLab. Top row:
synchrotron-based soft x-ray CP (a) raw data, reconstructed (b) object QPI and (c) probe
wavefront. Bottom row: visible light FP (d) raw data, reconstructed (e) object QPI and (f)
pupil. Amplitude and phase are depicted as brightness and hue; experimental details in
[76,134]. Figure adapted from [135].
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(QPI) of the object (resolution test target and lung carcinoma histology slide), and reconstructed
probe/pupil for the case of CP (top) and FP (bottom). Hue and brightness depict the phase and
amplitude, respectively, of the complex-valued reconstructed quantities. A variety of additional
data sets are published alongside PtyLab, which are summarized in Table 1. Each of these
data sets comes with an online tutorial explaining suitable data analysis approaches, including
self-calibration and regularization.

Table 1. Overview of open data sets and PtyLab tutorials. †: previously
unpublished.

mode size (MB) data set tutorials reference

CP 360 helical beam regular reconstruction [76]

CP 360 helical beam mixed-states [76]

CP 102 USAF axial position calibration (zPIE) [39]

CP 404 Siemens star total-variation regularization [21]

CP & FP 18 simulation conversion between CP and FP †

FP 10 lung carcinoma regular reconstruction [136]

FP 10 USAF position calibration [137]

8. Discussion and conclusion

PtyLab is a versatile ptychography software which we hope will aid researchers to explore the
capabilities of CP and FP. Nevertheless, despite our excitement about this endeavor, we should
mention some of its shortcomings: (1) Researchers with large-scale and high-throughput data
analysis tasks (e.g. beamline scientists at synchrotrons) may be better off with one of the currently
available high-performance ptychography packages mentioned in the introduction. However,
we believe increased performance comes at the cost of flexibility in algorithm prototyping. (2)
PtyLab currently does not support tomographic reconstruction with specimen rotation. It is
to be noted that external CT toolboxes, such as Astra [138] or Tigre [139], can principally
be used for ptychographic computed tomography once a sequence of 2D reconstructions at
different angles is available. However, some ptychotomographic software embed specialized
regularization techniques within the reconstruction routine [140], which are not available in
standard CT packages. In contrast, ptychographic optical coherence tomography (POCT) [25]
does not require angle diversity and 3D reconstructions can be obtained simply by performing a
Fourier transform along the wavelength dimension in a multispectral reconstruction object stack.
The latter is readily performed in PtyLab.

We have built PtyLab in an object-oriented and highly modular fashion. This enables the user
to assemble reconstruction algorithms from elementary algorithmic building blocks (e.g. exit
wave formation, propagation model, detector intensity and noise and model, partial coherence,
experimental setup parameters), which interact seamlessly and concurrently. The parameters of a
forward model can be modified during a reconstruction session.

We have designed PtyLab based on the principle of reciprocity. An interesting implication of
the conversion between CP and FP is performance, as it provides the freedom to choose whether
the computational complexity of the Fourier transform operation, used in typical inversion
algorithms, scales logarithmically with the number of pixels in the detector or with the number
of scan positions in a given data cube - numbers which can be orders of magnitude apart so that
even on a logarithmic scale, practical speed ups can be achieved. However, in order to take full
advantage of reciprocity, interpolation techniques to non-equidistantly sampled geometries are
required, which will be explored in future work.
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In summary, we have presented PtyLab, a cross-platform, open source inverse modeling
toolbox for CP and FP. We believe PtyLab’s major strengths lie in (1) the uniform framework
for CP and FP enabling cross-pollination between the two domains, (2) the availability in three
widely used programming languages (Matlab, Python, and Julia), making it easy for researchers
with different programming backgrounds to exchange and benchmark code snippets and data
anlyses, and (3) its versatile code architecture suited both for beginners and experts interested in
rapid ptychographic algorithm prototyping. In addition, a plethora of self-calibration features
(e.g. aPIE, zPIE) and algorithmic novelties (e.g. conversion between CP and FP, POCT, CP with
external reference beam, sPIE) are available that to our knowledge have previously not been
featured in open access ptychography code. Various functions for scan grid generation help
the user to optimize data acquisition and postprocessing. For further information the reader is
referred to the GitHub website with its accompanying tutorials as well as the open data provided
along with it [38].

Appendix

Equivalence of CP and FP

In this appendix, we provide a formal proof that the same data cube can be regarded as a CP or
an FP data set, implying the ability to convert between the two. Without loss of generality, we
assume we are given a far-field CP data set

Id (q, s) =
|︁|︁|︁|︁∫ P (x)O (x − s) exp [−i2πqx] dx

|︁|︁|︁|︁2 , (67)

where s and q denote scan positions and detector coordinates, respectively. For a given scan point
s0, we have

Id (q, s0) =

|︁|︁|︁|︁∫ P (x)O (x − s0) exp [−i2πqx] dx
|︁|︁|︁|︁2 (68)

=
|︁|︁P̃ (q) ⊗ Õs0 (q)

|︁|︁2 , (69)

where
P̃ (q) = Fx→q [P (x)] (70)

is the probe spectrum and
Õs0 (q) = Fx→q [O (x − s0)] (71)

is the object spectrum. CP solvers use the problem formulation in Eq. (68) for a sequence of scan
positions.

Next, consider a fixed observation pixel (q0) in the data cube in Eq. (67)

Id
(︁
q0, s

)︁
=

|︁|︁|︁|︁∫ P (x)O (x − s) exp
[︁
−i2πq0x

]︁
dx

|︁|︁|︁|︁2
=

|︁|︁|︁|︁exp
[︁
−i2πq0s

]︁ ∫
P (x)O (x − s) exp

[︁
−i2πq0 (x − s)

]︁
dx

|︁|︁|︁|︁2
=

|︁|︁|︁|︁∫ P (x)O (x − s) exp
[︁
−i2πq0 (x − s)

]︁
dx

|︁|︁|︁|︁2
=

|︁|︁|︁|︁∫ P (x)O′
q0
(s − x) dx

|︁|︁|︁|︁2
=

|︁|︁|︁P (s) ⊗ O′
q0
(s)

|︁|︁|︁2 ,

(72)
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where we defined
O′

q0
(x) = O (−x) exp

[︁
i2πq0x

]︁
. (73)

FP solves the problem formulation in Eq. (72) for a sequence of illumination directions. Thus
we may consider the same data cube to be either a CP or an FP inverse problem. From the CP
perspective we reconstruct P and O, while from the FP perspective we reconstruct P̃ and Õ.
Thus if we tackle a CP data from the FP perspective, we simply inverse Fourier transform the
reconstructed object spectrum to retrieve the object that we would have reconstructed had we
directly chosen a CP solver. A similar statement holds for the correspondence between probe and
pupil.
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