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Multimode fiber endoscopes provide extreme miniaturiza-
tion of imaging components for minimally invasive deep
tissue imaging. Typically, such fiber systems suffer from
low spatial resolution and long measurement time. Fast
super-resolution imaging through a multimode fiber has
been achieved by using computational optimization algo-
rithms with hand-picked priors. However, machine learning
reconstruction approaches offer the promise of better priors,
but require large training datasets and therefore long and
unpractical pre-calibration time. Here we report a method
of multimode fiber imaging based on unsupervised learn-
ing with untrained neural networks. The proposed approach
solves the ill-posed inverse problem by not relying on any pre-
training process. We have demonstrated both theoretically
and experimentally that untrained neural networks enhance
the imaging quality and provide sub-diffraction spatial res-
olution of the multimode fiber imaging system.
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Introduction. Optical fibers are widely used in many disciplines
from biomedical imaging to remote sensing. The combination
of multimode fibers (MMFs) and advanced wavefront shap-
ing techniques [1] offers minimally invasive investigation via
hair-thin lensless endoscopes [2,3]. Endoscopic fiber imaging
applications require the use of a single-pixel detector instead
of conventional recording of the two-dimensional (2D) signal.
Therefore, imaging through an ultra-thin MMF must be based
on advanced computational algorithms such as the transmis-
sion matrix measurements, compressive ghost imaging, and/or
holographic light shaping [4—6]. Compressive fiber imaging has
significant advantages over other modalities in terms of detection
sensitivity, spatial resolution, and imaging speed [7-9].
Compressive fiber imaging uses time-varying illumination
patterns and the synchronized signal collected by the same
fiber and recorded by a bucket detector to reconstruct the
sample image. Since the computational algorithm must solve
an underdetermined inverse problem, the choice of algorithm
and imaging priors is very important. Traditionally, images are
recovered by solving a convex optimization problem, minimiz-
ing both a least squares loss based on the physical model and a
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prior term, which enforces sparsity [10]. There is always the need
to adjust the method to different experimental conditions when
it concerns practical applications [11]. Over the last years, many
different approaches have been developed for solving imaging
inverse problems [10—14]. However, they are currently being
outperformed by deep learning tools, where a network structure
is better suited to image representation [15].

Machine learning has become a popular and powerful tool for
computational imaging [16—19]. Recently, several deep learning
frameworks have been demonstrated for MMF imaging [20-24].
However, these approaches typically require large datasets of
labeled image and ground-truth pairs. It makes real-life appli-
cations nearly impossible as obtaining ground-truth datasets for
a flexible MMF is impractical. As a solution to this problem,
we have recently proposed the generative adversarial network
(GAN) based MMF imaging framework [25]. This approach
does not require labeled pairs but still relies on a large training
dataset of expected unlabeled sample images.

Recent works on unsupervised learning with untrained net-
works, such as deep image prior (DIP) [26], are very promising.
It has been proven that ill-posed inverse problems can be solved
with a well-designed generator network [27]. Due to the nature of
DIP, which directly uses the untrained neural network to solve
phase retrieval [28,29] or compressive sensing [30,31] prob-
lems, design the diffractive optical element [32], or enhance the
reconstruction of ptychography [33], there is no need for the
pre-training of the neural network, and hence also no need for
the preparation of either labeled or unlabeled training datasets.
The structure of neural networks themselves serve as a prior on
image statistics without any pre-training. The network is used
as an image generator, outputting the recovered image, while
its weights and biases are updated through a loss function com-
paring the results with the experimental data. Untrained neural
networks for compressive optical imaging have been recently
demonstrated [34,35].

Here we present an MMF compressive imaging framework
based on an untrained neural network. We have shown the
improved performance and better reconstruction results both
theoretically and experimentally.

Theory. Super-resolution compressive endo-microscopy [8]
is based on a speckle illumination and single-pixel detection
scheme. The imaging system and reconstruction process is
shown in Fig. 1. An MMF is used to generate a series of speckle
patterns to illuminate the sample while a bucket (single-pixel)
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Fig. 1. Schematic illustration of the experimental setup for
multimode-fiber-based compressive imaging (top) and of computa-
tional reconstruction process (bottom). The sample is illuminated
with various speckle patterns generated in the multimode fiber.
The corresponding transmitted intensity is recorded by the single-
pixel detector. The camera records the illumination speckle patterns.
These data are used for the computational reconstruction of the
image.

detector records the total signal. The imaging process can be
described with the forward model of a linear equation, while
multiple measurements formulate the under-determined system:

y = Ax, (1)

where x is the unknown flattened sample of size n X 1 and the
flattened illumination speckle A; (also n X 1) turns out to be one
row of the measurement matrix A of size m X n. A total of m
intensity measurements give the measurement vector y of size
m X 1 (m < n). The traditional ghost imaging approach solves
this ill-posed inverse problem by correlating the intensity with
the corresponding illumination pattern:

L
x= Z(v - A, ()

The more advanced basis pursuit (BP) method of compressive
sensing explores the sparsity constraint and reconstructs the
image by

min ||x||, st y=Ax, (3)
X

where the ||x||; is the /; norm of vector x. In experiments, we use
BPDN, which is the denoising version of BP. The ghost imaging
and BP approaches are used to compare the image reconstruction
quality with the untrained neural network based fiber imaging.

For the architecture of the untrained neural network, we use
the U-net [36] structure modified from the study of Wang et al.
[34], which consists of two convolutional layers in the encoder
and one deconvolutional layer in the decoder with skip con-
nections. The untrained neural network f,(z) solves Eq. (1) by
minimizing the loss function:

L(0) = |Afo(2) - yIP%, @

where z is the input for the untrained neural network and 6 con-
tains the weights and biases. By training on the single data point,

Letter

Ground truth Measured speckles

Sampling rate 10%

BP

Correlation

&

(@)

3

>
=
5
2
Q
o
2Z2
2
©
o
<
o

o =~

Sampling rate 30%

BP

Ghost Imaging Ghost Imaging

BP start BP start Random start

1.0 1.0

0.8 0.8
0.6 0.6
—— Correlation X 0.4 0.4
0.2 Loss 02 0.2
00| g oM
0 100 200 300 0 100 200 300 O 100 200 300 O 100 200 300
Epochs Epochs Epochs Epochs

Fig. 2. Simulation results for MMF-based imaging. (a) Left,
ground-truth image of the single neuron; middle, examples of the
measured speckle patterns used in simulations; right, speckle pat-
tern cross correlation histogram. (b) Image reconstructed with BP
(first and third columns) and ghost imaging algorithms (second and
fourth columns) for the sampling rate of 10% (left) and 30% (right).
(c),(d) Imaging results of the proposed approach with the untrained
neural network after (c) 100 and (d) 300 epochs for the sampling rate
of 10% (left) and 30% (right) with the respective input z indicated
on top. Correlation coefficient r with the ground truth is shown in
each image. (e) Correlation with the original image and loss change
during the reconstruction process as a function of the number of
epochs for different sampling rates and inputs z. The scale bar is
equal to the 5x diffraction limit ~ 6 um.
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the solution of Eq. (1) is approximated as X = f(z). The imag-
ing reconstruction process using an untrained neural network
is illustrated in Fig. 1. Image reconstructions have been done
on a workstation computer with AMD 3970X CPU with 128-
GB memory and the Nvidia RTX 2070 super GPU with §-GB
video memory. The Pearson correlation coefficient r between
the reconstructed image and the ground-truth image is used to
evaluate the reconstruction quality, due to its better performance
than the structural similarity index (SSIM) [37].

Simulations. First, we test the performance of fiber-based
compressive imaging with the untrained neural network, we
perform the numerical experiment, and simulate the realistic
imaging procedure. As a sample, we use a single neuron shown
in Fig. 2(a, left). The ground-truth image has a size of 56 x
56 pixels and 35.6 x 35.6 um. We simulate real imaging condi-
tions by using a set of experimentally measured speckle patterns.
The diffraction limit of an MMF is dy = ﬁ ~ 1.2 um, where

A =0.532 um is the wavelength of light and NA= 0.22 is the
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numerical aperture. The different speckles were generated by
sequential scanning of the focused beam over the input fiber
facet on a square grid with a mean distance between adjacent
points of approximately 1.2 pm. The examples of experimen-
tally measured speckle illumination fields are presented in
Fig. 2(a, middle). We characterize the linear independence of
the recorded speckle patterns by the Pearson correlation coeffi-
cients between each pair of the recorded intensity images. The
results are presented in Fig. 2(a, right). The histogram shows
that the real illumination patterns generated by a multimode
fiber have a high level of decorrelation or that they are mainly
linearly independent.

We simulate two different sampling rates of 10% and 30%
of the total number of pixels by using 314 and 941 speckle
patterns, respectively. The signal on the bucket detector (y) has
been simulated using Eq. (1) with measurement matrix A of size
314 x 3136 and 941 x 3136 with no additional noise. First, the
reconstruction is done with the traditional BP method [Fig. 2(b),
first and third columns] and ghost imaging algorithm [Fig. 2(b),
second and fourth columns]. Ghost imaging fails to reconstruct
the original sample for both sampling rates. The BP reconstructs
the very noisy image only for a relatively high sampling rate of
30%.

In the second set of simulations, we use the same data, but
the reconstruction is done by the unsupervised neural network,
as shown in Fig. 1. As input z of the untrained neural network,
we used either the random noise or the output of the BP algo-
rithm. The image reconstruction results after 100 and 300 epochs
(iterations) are shown in Figs. 2(c) and 2(d), respectively. The
presented images are retrieved by the unsupervised neural net-
work for the sampling rate of 10% (first and second columns)
and 30% (third and fourth columns), and for z equal to the results
of BP algorithm (first and third columns) and random noise (sec-
ond and fourth columns). We see that the reconstruction result is
getting better with the number of epochs. We always apply early
stopping within the loss function plateau region to avoid over-
fitting for each simulated and experimentally measured dataset.
The Pearson correlation coefficients between the reconstructed
image and the original sample are shown in the figures providing
a quantitative measure of imaging quality.

For 30% sampling rate, r reaches 0.95 after 300 epochs, while
for 10% sampling rate, it is slightly lower. Compared with the
BP and ghost imaging results shown in Fig. 2(b), the untrained
neural network method shows superior performance. We also
investigate the changes during the network-based reconstruction
process. Figure 2(e) shows the correlation coefficient and loss
function as a function of the number of epochs for different sam-
pling rates and inputs z. It indicates that 300 epochs (iterations)
are enough in this case to reach convergence. It takes approxi-
mately one minute to run 300 epochs and reconstruct the image
on our PC. The image reconstruction speed is not significantly
influenced by the original sampling rate and input z. The simu-
lation also shows that while we could see slight improvement if
we provide the network with more preliminary data by input z,
the input does not significantly influence the final reconstruction
quality, i.e., using BP results as input has the similar result of
using random data.

Experimental validation. We perform fiber-based compres-
sive imaging experiments with the untrained neural network.
The setup is presented in Fig. 1. We scan a focal spot across the
MMF input and project the resulting speckle pattern on the sam-
ple and a camera with 54x magnification. The total signal from
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Fig. 3. Multimode fiber imaging experiments. (a) Inverse contrast
reference images of six samples with different feature sizes and
complexity. (b)—(d) Reconstruction results from the same dataset
using the (b) untrained neural network; (c) BPDN algorithm; and
(d) ghost imaging algorithm. The scale bar is equal to the magnified
diffraction limit of the optical system ~ 65 pm.

the sample is recorded by a single-pixel detector. As samples,
we used custom-made glass slides with a reflective aluminum
film patterned with various shapes: dots and hand-written digits
as presented in Fig. 3(a). The thickness of the aluminum film is
adjusted to ensure a binary transmission function. The smallest
features of samples 1-4 were 1.4, 1.8, 2.5, and 4 times smaller
than the magnified diffraction limit, which is Mxﬁ ~ 65 um,
where M= 54 is the magnification of the optical system [38].
The computational reconstruction allows for the image pixel
size to be chosen almost arbitrarily. We aim to resolve fea-
tures ~16 um which is four times smaller than the magnified
diffraction limit. Therefore, we went for a pixel size of 5 um and
400 x 400 pixels in the image to ensure accurate representation
and that the Nyquist criterion is satisfied. The sampling rate can
be calculated as 961/400° x 100% = 0.6%. For samples 5 and
6, sampling rates were chosen to be 961/540% x 100% = 0.3%
and 2013/300% x 100% = 2.2%, respectively. Such extremely
low sampling rates are the result of a large field of view
combined with a limited number of illuminating speckle
patterns.

We use experimentally measured matrices A and bucket
detector intensities y also reported in [25,38] to reconstruct the
transmission function of sample x and experimentally test the
performance of the proposed untrained neural network based
imaging [presented in Fig. 3(b)] and compare it with other recon-
struction approaches: /; norm minimization by BPDN [Fig. 3(c)]
and traditional ghost imaging [Fig. 3(d)].

Ghost imaging does not provide any resolution enhancement
and can resolve two dots only for sample 1. For more complex
samples 5 and 6, ghost imaging returns only the noise. The more
advanced BPDN algorithm provides nearly perfect image con-
trast and resolution enhancement below the diffraction limit for
samples 1-3. However, sample 4 is not resolved and the recon-
struction quality of more complex samples 5 and 6 is mediocre.
The proposed MMF imaging approach with an untrained neural
network allows for resolving two dots for all four samples as
presented in Fig. 3(b). It also provides better reconstruction of
the more complex structure of samples 5 and 6, especially in the
case of a very low sampling rate. We have always started from an
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untrained network and run the reconstruction procedure for 300
epochs, applying early stopping within the loss function plateau
region. As input z, we use a random noise. The reconstruction
procedure takes around ten minutes.

We experimentally show that the proposed neural network
based fiber imaging provides better image reconstruction than
other methods resolving features with a size four times smaller
than the diffraction limit. While two dots are resolved in the
image, their sizes are not always reconstructed accurately and are
enlarged compared to the ground truth. This could be the result of
an extremely small sampling rate of 0.6% as well as the presence
of experimental noise. To further improve the reconstruction
quality and tolerate the error in the experimentally measured
forward model, the regularization terms can be included into
the loss function [34].

Conclusion. To summarize, we present the application of
using an untrained neural network in the MMF compressive
imaging framework. We have demonstrated that the untrained
neural network improves the reconstruction quality of the images
in the MMF compressive imaging framework both in simula-
tion and in experiments with different samples. While all the
samples are resolved by the untrained neural network, images
could still suffer from artifacts. This is the result of an extremely
low sampling rate as well as the presence of experimental noise.
The untrained network outperforms conventional methods, espe-
cially in the case of the extremely low sampling rates. The
proposed approach takes advantage of the training process of
the neural network, and hence does not need a training dataset,
which has a huge benefit over other traditional deep learning
based methods.
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