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Abstract: We demonstrate optical readout and actuation of nanomechanical motion using
plasmonic fields in a nanoscale gap waveguide. The top gold layer of the waveguide is free to
vibrate like a drumhead, and patterned with an optical grating to facilitate efficient coupling to
free-space radiation. The change of the plasmonic gap mode with the top layer position couples
the plasmonic resonance to the mechanical displacement of the drum. We characterize optical
and mechanical resonances of the system, and demonstrate sensing of nanomechanical vibrations
with ∼10−14 m/

√
Hz sensitivity. The mechanical resonators are actuated through plasmonic

forces. Quantifying their magnitude shows that plasmonic forces can significantly exceed pure
radiation pressure, indicating that their nature is dominated by a photothermoelastic effect. This
work opens avenues to the use of plasmonic readout and control in nanomechanical sensing
applications.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Nano-opto-electro-mechanical systems (NOEMS) couple mechanical degrees of freedom to
optical and electrical fields in on-chip architectures [1]. Those fields provide means to both
probe and control mechanical motion at the nanoscale, with interesting applications from optical
switching to coherent signal transduction. They are of particular interest to sensing applications
[2–9] as miniaturized NOEMS have proven to be very sensitive to small perturbations in
displacement [10,11], mass [12], temperature [13,14], and force [15,16]. Cavity optomechanical
devices are a class of systems where optical resonator fields are coupled to a mechanical
resonator [17]. This allows for highly efficient displacement measurement, as well as actuation
of mechanical motion through radiation pressure forces [17–26].

Typical optomechanical sensors employ dielectric or mirror-based cavities and are thus
constrained by the diffraction limit, which limits optical mode confinement to scales of at least
the optical wavelength. The diffraction limit presents an effective limitation to optomechanical
design: On the one hand, the optomechanical frequency shift G = ∂ωc/∂x of cavity frequency
ωc due to displacement x as well as the force ℏG exerted on the mechanical resonator per photon
are inversely proportional to cavity size. On the other hand the spatial extent of nanomechanical
resonators can be significantly smaller in one or more dimensions than the optical wavelength.
While sensitivity can be boosted by employing high optical quality factors, the associated narrow
optical linewidths can present practical disadvantages. For nanoscale sensors, in particular with
the perspective of large-scale integration and massively parallel implementation [27], it could
thus be useful to pursue alternative approaches to optomechanical transduction that are inherently
broadband and efficiently interfaced to optical input and output fields.
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Plasmonic optomechanical devices have been explored as optically broadband systems for
mechanical transduction, exploiting their ability to confine light to subwavelength dimensions to
feature large optomechanical interaction strengths and natural integration with nanomechanical
resonators [28–32]. Plasmonic systems have been used extensively in the study of small-scale
perturbations [33,34] and were recently also exploited in reconfigurable metamaterials [35–38],
for motion sensing [28,30,39,40], as switches [41], for photothermal studies [42] and as strain
sensors [43]. Forces between plasmonic particles and in plasmonic structures have been studied
in a variety of systems, ranging from metamaterials [37,44–47], nanoantennae [48,49], and
plasmonic tweezers [50–55], to nanomechanical systems [31,56,57]. Besides measurement,
plasmonic fields could also provide an interesting pathway to the actuation of sensors, of high
interest to various sensing applications [10]. Plasmon-induced mechanical self-oscillation was
observed [29,31], and Ou et al. used forces exerted by plasmonic fields to actuate string-like
mechanical motion [37], reporting forces of the order of 0.5 P/c, with P the incident power and c
the speed of light. While the latter study reported forces that could be explained purely from
the Maxwell stress tensor, other works have considered thermal effects in actuation mechanisms
[29,31,46].

In this work, we report a plasmonic optomechanical system with a large overlap between
nano-confined light fields and the displacement of a nanomechanical resonator’s surface, and
study both transduction and actuation of motion. The system is based on a plasmonic gap
waveguide (also called metal-insulator-metal waveguide), which confines light in between two
metal surfaces separated by a nanoscale gap. These plasmonic fields feature strong sensitivity to
a small perturbation of the gap [58]. We fabricate gap waveguides with a top metal film that
can move freely as a drum, as illustrated in Fig. 1. The top metal layer is suspended by partially
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Fig. 1. Plasmonic optomechanical gap resonator. (a) The displacement associated with the
motion of one of the mechanical modes of the Au drum is described using a parameter x.
Depicted here is the fundamental mode of the drum. (b) The in-plane component of the
magnetic field of the surface plasmon gap mode that is confined between the metal layers.
There is a strong field in the vacuum gap, which is affected by a change of the separation
of the Au layers. (c) Artistic representation of the system under study. It consist of two
thinly spaced metal layers, where the top layer is free to move and has an optical grating that
couples gap plasmons to free-space radiation. The motion of the top membrane is read out
and actuated via the gap plasmons.
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etching away a Si sacrificial layer, leaving a suspended membrane. It is patterned with a grating
of subwavelength holes in order to facilitate optical coupling of free-space light to the plasmonic
mode. This provides advantages for device integration, since the device can be addressed through
free-space laser fields, without the need for electrical leads or on-chip waveguides, which could
enable a denser packing of devices to be used as sensors.

The motion of the drum is coupled to the plasmonic fields in the MIM waveguide. The grating in
the top film creates an optical resonance for normal-incidence light, whose properties are affected
by the displacement of the membrane resonator. This coupling allows the MHz-frequency motion
to be transduced to optical modulations of a near-infrared laser that is probing the resonance.
Moreover, we report controlled actuation of the motion via an optical pump and measure the force
exerted by the plasmonic field on the mechanical drum modes. We find that it is approximately
100 times greater than what is predicted by the Maxwell stress tensor and the optomechanical
frequency shift, suggesting that photothermal forces can be important in nanoplasmonic devices
and could in fact play an enabling role in sensing applications.

2. Materials & methods

2.1. Fabrication

For the fabrication of the drum resonators, a triple layer stack of Au, a-Si as a sacrificial layer,
and Au is evaporated on a silicon substrate. A Ge spacer layer of 1.5 nm thickness is evaporated
in between both gold layers and the silicon sacrificial layer, to minimize migration of Si into
the Au lattice. A Ti adhesion layer of 1.5 nm is placed between the silicon substrate and the
bottom gold layer. The system used for deposition is a Polyteknik Flextura M508 E, in which the
materials are deposited at a rate of 0.5 Å/s. The bottom gold layer has a thickness of 100 nm and
the top membrane layer has a thickness of 60 nm. The Si spacer, which determines the gap size,
has a thickness of 80 nm.

Using a focused ion beam (FIB, FEI Helios), holes are milled into the top layer. These holes
function as both an access to the sacrificial Si layer for etching, and as an optical grating to allow
coupling of light to the plasmon mode. Subsequently, the sacrificial layer is removed using a XeF2
dry etch step in the same system. Etching times are chosen with the aim to remove all material in
between the holes, fully releasing a drum that is supported by the remaining silicon film outside
the patterned area. The XeF2 etch is isotropic, and found to extend ∼750 nm outside the edges of
the holes. The shape of the drum is thus determined by the pattern of holes in the top film and the
underetch. For a square arrangement of holes the drum shape is indeed largely square, whereas
for other patterns it resembles an octagon. The hole pattern is determined by fitting an optimum
number of holes fully within a circle with the desired radius (minus the underetch depth). We did
not note a correlation between hole pattern shape and observed mechanical quality factors.

We note that the FIB milling implants Ga+ ions into the silicon film. As we detail in
Supplement 1 section 7, this can leave small ‘pads’ of Ga-containing material that are not fully
removed by the XeF2 etch right underneath the holes. They are not found to significantly impact
the plasmonic properties. The fabrication process, as well as scanning electron microscopy
(SEM) images of example devices, is outlined in Fig. 2. We have noticed that releasing a drum
with a radius of ∼6 µm or larger causes the drum to collapse. This could potentially be mitigated
by engineering the top layer to exhibit tensile strain, which could be done by e.g. sputtering
aluminium.

2.2. Measurement setup

The setup that is used for optical readout and actuation is shown in Fig. 3. A variable wavelength
probe laser (Toptica CTL, 1460-1570 nm), is used to measure the drum’s reflectance. The probe
laser wavelength can be tuned to optimise the signal from the structure under study. The sample

https://doi.org/10.6084/m9.figshare.24168954
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Fig. 2. (a) An example of a fabricated plasmonic drum resonator. The holes made through
FIB are visible and the top layer is suspended. (b) A crosscut of the same drum, showing
the suspension of the top layer after successful under-etching of the Si sacrificial layer. (c)
Overview of the fabrication process. We start with evaporation of the Au, the Si sacrifical
layer, and the adhesion layers (left). Subsequently, holes are created in the top gold layer
through FIB (middle), and lastly the top layer is released by dry etching the Si sacrificial
layer.

is placed inside a vacuum chamber, which is pumped down to approximately 10−3 mbar. Light is
focused on the sample using a Mitutoyo MY20X-824 objective (0.40 NA), giving spot size of
approximately 3 µm. This value is obtained by scanning the laser spot over the edge of a large
square hole milled into the gold layers and observing the reflected power. A curve is subsequently
fitted to the position-dependent reflectivity to estimate the diameter of the Gaussian focus.
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Fig. 3. The setup used for actuation and readout of the motion. The greyed out mirror before
detector PD-1 can be added or removed from the setup, where adding it will lead to path 1
being followed, and subsequently hitting detector PD-1. If the mirror is not added, path 2
is followed, and the beam is coupled to a fiber that leads to detector PD-2. The different
voltages resulting from the detectors are denoted in grey, using the same nomenclature as in
the rest of the text. The sample is indicated in yellow.

Light reflected from the sample is focused on one of two detectors, selected via a removable
mirror. The first is an AC-coupled fast photodiode (Newport 1811-FC-AC, denoted PD-1). The
second path is focused on an optical fiber, which contains a wavelength filter that transmits
the probe laser light, before being detected on a DC-coupled photodiode (Newport 1811-FC,
denoted PD-2). A sketch of the setup is displayed in Fig. 3. The choice of detector depends on
the experiment that is conducted, as we describe below.
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As the drum moves, the properties of the optical cavity, and hence its normal-incidence
reflectance R, vary with the drum’s displacement x. The thermal motion of the drum is thus
transduced through the optical reflectance. We can generally state that

Pout(x) = R(x)Pin, (1a)

SPP =

(︃
∂R
∂x

)︃2
P2

inSxx, (1b)

where Pin is the input power of the laser, Pout the reflected power, modulated by the motion, and
Sxx and SPP the (two-sided) displacement spectral density of the resonator and the power spectral
density of the reflected light, respectively. The recorded voltage by detector PD-i (i = 1, 2) is
Vi = ζiPout where ζi is the detector-specific transduction factor (in V/W). This transduction factor
accounts for the transmission through the optical detection path, as well as for the responsivity
and amplification of the detector. It does not take into account the transmittance of the optical
filter in the second path, which we denote separate by ζfilter.

The DC voltage of detector PD-1, containing time-averaged information about the drum
reflectance, is led to a National Instruments data acquisition device (DAQ). The AC voltage of the
same detector, which transduces the mechanical motion of the drum, is connected to a Tektronix
RSA306B real-time spectrum analyser (RSA).

By using a fiber-coupled intensity modulator (IM), a pump laser at 1550 nm can be used to
actuate the motion of the structure. For those experiments, the pump laser is combined with the
probe laser in a fiber coupler (WDM, wavelength division multiplexer) such that both can be
focused to the sample simultaneously. The reflected signal from the probe laser is led to PD-2
via path 2 (Fig. 3), where the pump laser is filtered out using an optical filter. The linear response
of the mechanical system is studied by use of a vector network analyser (VNA). The output V1
from port 1 of the VNA provides the modulation frequency for the IM. The voltage V2 coming
from PD-2, containing information about the motion, serves as input for port 2 of the VNA. The
transfer parameter S21 ≡ V2/V1 of the VNA contains the information about the linear response of
the system to the applied signal. This is explained further in section 3.2.3.

3. Results

3.1. Simulated optical and mechanical properties of the resonators

The gap plasmons are coupled to free-space radiation through diffraction at a periodic array of
subwavelength holes in the top layer. This creates a resonant optical response if the in-plane
wavevector of a diffracted order matches the wavevector magnitude kSPP of the gap plasmon
polariton, i.e., if

kSPP =

|︁|︁|︁|︁k∥+n
2π
a

x̂k + m
2π
a

ŷk

|︁|︁|︁|︁ , (2)

where k∥ is the in-plane component of the incident wavevector, n and m are integers specifying
the diffraction orders of the square grating, x̂k and ŷk are unit vectors, and a is the grating pitch
in both directions. This equation is of course valid for an infinitely periodic grating, whereas our
devices have only a small number of holes. Nonetheless, we expect that the basic diffraction
mechanism is similar.

To understand the mechanism better and determine useful parameters, we therefore study
simulations of the optical response of an infinite lattice of holes in the top membrane using
COMSOL Multiphysics 5.2a (see Supplement 1 section 1 for details on the simulation methods).
Figure 4(a) shows the calculated reflectance of a plane wave from the structure with a 1.15 µm
period and 500 nm hole diameter as a function of frequency and in-plane wavevector k, around
the frequencies that satisfy Eq. (2) for normal incidence. We recognize multiple crossing bands

https://doi.org/10.6084/m9.figshare.24168954
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appearing as reduced reflectance in the spectrum, associated with diffraction to surface plasmon
modes in a square lattice [59]. The ‘brightness’ of the bands, i.e., the efficiency with which
they couple to free-space radiation, varies. At k = 0, we see that the spectrum is characterized
by a single resonance dip, with reflection on resonance becoming very small (∼ 0.1) for the
chosen hole diameter. The general design of a gap waveguide with perforated top plate is
indeed known to allow near-perfect absorption [60]. As we detail in Supplement 1 section 2, the
hole diameter can be chosen to minimize reflectance without introducing unnecessarily large
linewidth due to increased radiation at large hole sizes. Larger hole diameters increase the rate
at which the plasmonic gap mode is coupled to the free-space radiation through diffraction.
Near-zero reflectance is reached for critical coupling, i.e. when the outcoupling rate is equal to
the absorption rate. While the absorption rate also changes slightly due to the presence of the
holes, the fact that the reflectance can approach zero for a proper hole diameter shows that the
critical coupling condition can be met. The optical frequency and decay rates at k = 0, with k
being the in-plane wave vector, vary furthermore with grating pitch and with separation distance x
between the metal layers. Figures 4(a) and (b) compare the spectra for metal layer separations of
80 and 100 nm, respectively. It is this change of optical reflectance with membrane displacement
x that allows optical transduction of mechanical motion.

a. b.

c. d.

radia
tive

nonradiative

nonr
adiat

ive radiative

Fig. 4. (a,b) Simulated angle-dependent reflectance spectra of an infinite two-dimensional
lattice of holes in the top layer of a plasmonic gap waveguide. The square lattice under
study has a hole pitch of 1.15 µm and a hole diameter of 500 nm. The gap thickness is 80
nm (a) and 100 nm (b), and the reflectance for s and p polarizations are averaged. (c,d)
The variation of the optical resonance frequency (c) and optical decay rate (d) with x for
k = 0, obtained from simulations of the quasinormal modes of a waveguide. The two
eigenmodes are labeled ‘radiative’ and ‘nonradiative’ and correspond to bright and dark
bands, respectively, distinguished by their linewidth.

Using the COMSOL eigenvalue solver including perfectly matched layer (open) boundary
condition to the top, we can obtain the expected frequency and linewidth of the surface plasmon
modes from the complex eigenfrequency of the obtained quasinormal modes. Supplement 1
section 1 provides details on the simulation methods. The optical frequency and decay rate κ are
plotted as a function of layer separation for the modes at k = 0 in Figs. 4(c) and (d), respectively.
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We notice that the derivative of the cavity frequency to x becomes greater with decreasing
separation, while there is also a modest increase of the linewidth of the radiative mode of interest.

Given that at k = 0 only a single resonance is seen, we describe the optical reflectance of the
grating for normal incidence as

R =
|︁|︁|︁|︁r0eiϕ −

κex
κ/2 − i∆

|︁|︁|︁|︁2 = r2
0 −

κex

κ2/4 + ∆2 (r0 (κ cos φ + 2∆ sin φ) − κex) , (3)

where 1 − |r0 |
2 is scattering loss and φ is a possible phase difference of the resonantly reflected

field and the direct reflection. The plasmonic resonance is thus modeled as a Lorentzian oscillator
whose spectrum can in principle feature a Fano-like lineshape. The total decay rate κ is the sum
of κex, the optical coupling rate to the laser beam, and κ0, the internal optical decay rate including
absorption. The optical detuning ∆ = ω − ωc gives the difference between the laser frequency
ω and the optical cavity frequency ωc. We consider that the parameters ∆, κ0, and κex could in
principle each depend linearly on the displacement x of the top layer, such that

∂R
∂x
=
∂R
∂ωc

∂ωc

∂x
+
∂R
∂κ0

∂κ0
∂x
+
∂R
∂κex

∂κex
∂x

. (4)

The dominant contribution in the simulated structures comes from the first term, i.e. dispersive
coupling due to ∂ωc/∂x. The magnitude of the optomechanical frequency shift is ∂ωc/∂x/(2π) =
418 GHz/nm for a gap of 80 nm, and varies quite strongly with the gap size: For 90 nm gap
∂ωc/∂x/(2π) = 353 GHz/nm and for 70 nm gap ∂ωc/∂x/(2π) = 503 GHz/nm. In contrast,
the expected linewidth shift ∂κ/∂x/(2π) in Fig. 4(d) is approximately 20 GHz/nm, and varies
comparatively less with gap size. We return to the possible variation of both κ0 and κex with
displacement in section 3.2.2. For a shot-noise limited measurement of displacement, the
signal-to-noise ratio (SNR) scales as (∂R/∂x)2Pin when employing direct detection of reflected
intensity. This means that, for sensing purposes, it is generally desirable to use a small gap, since
the stronger responsivity of the optical resonance to mechanical perturbations for small gaps
outweighs the detrimental effect of a larger resonance linewidth, for the parameter regime we
consider.

One can estimate the electromagnetic force exerted on the top film with this infinite lattice
using the Maxwell stress tensor, given by [61]

T = ε0εr
(︃
E ⊗ E −

1
2
|E|2I

)︃
+ µ0µr

(︃
H ⊗ H −

1
2
|H|2I

)︃
, (5)

where I is the unit tensor. The resulting force on a volume V is

F =
∫

V
∇ · T dv =

∫
∂V

T · n da, (6)

where ∂V is the surface enclosing the volume and n the surface normal vector. We note that this
expression neglects the Casimir force, which results from the vacuum field.

Light is simulated to be perpendicularly incident on the grating used in Fig. 4(a), yielding the
reflection spectrum shown in Fig. 5(a). Using Eq. (6), the optical force exerted by the bright mode
on the membrane is calculated for an incident power P, as shown in Fig. 5(b). As the resonance
frequency of the cavity is approached, the force on the structure, forcing the top membrane
towards the substrate with magnitude F ≡ |F|, increases. The total force reaches a maximum
value of 22.4 P/c on resonance, or 76.5 pN for a pump intensity of 1/1.152 mW/µm2.

By calculating the individual contributions to the force of the upper and lower surface of the
membrane, we recognize that the former approaches the radiation pressure force 2P/c on a flat
Au mirror away from resonance, whereas the latter dominates on resonance, due to the enhanced
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Fig. 5. (a) Reflection spectrum for an infinite lattice of holes in a gold membrane suspended
above a gold substrate. The lattice pitch is 1.15 µm, while the hole diameter is 500 nm. The
membrane is suspended 80 nm above the substrate surface. The inset shows the unit cell
of this lattice, as seen from the top. (b) Spectral dependence of the force exerted on the
top membrane in this infinite lattice for an incident power P. The inset shows a crosscut of
the structure. We distinguish between two calculated force contributions; that on the upper
surface of the membrane (FU) and that on the lower surface (FL). The total force F on
the membrane is the sum of these. Also indicated as a black dashed line is the force on an
unstructured gold layer, being approximately equal to the radiation pressure on a perfect
mirror. With the blue dashed line, the expected optomechanical force FOM due to dispersive
coupling is indicated.

field in the gap. We moreover note that the maximum force has a good correlation with the
force expected from optomechanical theory FOM = ℏGn, with G the optomechanical dispersive
coupling constant and n the cavity occupancy, calculated as n = κex/(κ

2/4 + ∆2)(P/(ℏω)). This
again confirms that the dispersive optomechanical coupling characterized by frequency shift G
dominates the interaction.

We remark that this analysis of a plane wave incident on an infinite grating is a simplified
depiction of the actual experiment. With a Gaussian beam incident on the sample, the optical
response will effectively be averaged over the angular range that is contained in the incident
beam. Effectively, this is expected to lead to a broadening of the spectral resonance. As such, we
thus expect a trade-off between the optical resonance linewidth and the size of the drum, which
defines the required transverse localization of the optical field. In general, optimal designs would
feature a drum size that is comparable to the transverse coherence of the optical field, given by
the decay length of the plasmonic mode propagating in the gap waveguide. This, in turn, depends
on the size of the holes, as shown in Section 2 of the Supplement 1. Finally, we remark that the
finite size of the hole array, as well as the fact that at the edge of the drum there is an interface
between vacuum and silicon inside the gap, could lead to spatial optical mode confinement in the
plane of the waveguide.

It is expected that the optical field, which exerts an out-of-plane downwards force, couples
well to the fundamental mechanical mode of the drum, which displays a large area of membrane
displacement in the out-of-plane direction. The simulated displacement of this and several other
mechanical modes is shown in Fig. 6. These have been obtained through a mechanical eigenmode
study in COMSOL.

It is relevant to determine the effective mass meff of the mode, which links the (thermal) energy
present in a mechanical mode to its mean square displacement ⟨x2⟩ as

⟨E⟩ = kBT = meffΩ
2
m⟨x

2⟩, (7)

where Ωm is the mechanical mode frequency, T the bath temperature, and we have employed
the equipartition theorem [62]. The effective mass is needed to determine the magnitude of the

https://doi.org/10.6084/m9.figshare.24168954
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Fig. 6. Theoretical mechanical modes of the microdrum. The out-of-plane displacement is
plotted, and the mechanical frequencies of the corresponding modes are indicated in each
panel.

displacement spectral density of a mechanical resonator. In thermal equilibrium, this is given by

Sth
xx =

2kBT
meff

Γm

(Ω2
m −Ω2)2 + Γ2

mΩ
2
, (8)

where Γm is the mechanical linewidth and the relation

1
2π

∫
Sth

xx dΩ = ⟨x2⟩ (9)

holds. Upon defining the displacement x as the maximal displacement within a mechanical mode
profile, the effective mass of the mode can be determined via the formula

meff =

∫
V
ρ(r)|u(r)|2dr, (10)

where V is the volume of our moving membrane, ρ is the mass density, and u is the displacement,
normalised to its maximum magnitude. For a perforated gold drum where the radius of the
suspended membrane is approximately 4.5 µm, the effective mass of the fundamental mode
(upper left in Fig. 6) is 9.5 pg.

3.2. Experiments

3.2.1. Detecting thermal motion

Figure 7 shows a measured displacement spectrum obtained by measuring the modulation of
reflected intensity of a ∼4.5 µm radius drum using an incident power of 500 µW. At the used
wavelength, the reflectance was significantly reduced and depended on wavelength, indicating
that the laser was tuned to the side of a plasmonic resonance. The total signal, as measured by
the RSA, consists of several contributions: The electronic noise stems from the amplifier in
the detector, whereas the shot noise is related to the quantized nature of the detected optical
intensity. The magnitude of its optical power spectral density is ℏωPdet, with Pdet the optical
power impinging on the detector. Together, electronic and shot noise provide the imprecision to
the total signal. The motion of the resonator is transduced to the signal on the detector through
Eq. (1b). In order to obtain the motion spectral density from the RSA power spectrum, the
Lorentzian peak area is normalised to kBT/(2meff) according to Eq. (7). This calibrates the
vertical axis of Fig. 7. The imprecision for this displacement measurement is 1.27 × 10−14
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m/
√

Hz. The mechanical quality factor, obtained from the Lorentzian fit to the spectrum, is 139
in this measurement, which was found to be a typical value among the investigated drums. As we
conclude from pressure-dependent measurements reported in section 8 of the Supplement 1, the
quality factor is not limited by gas damping below pressure of ∼1 mbar; Other mechanisms such
as clamping losses, thermoelastic damping, and two-level fluctuators are the possible sources of
mechanical dissipation.

signal

electrical imprecision

shot noise imprecision

resonator motion

Fig. 7. Spectral displacement density of one of the modes of a drum, with Ωm =
2π × 6.59 MHz, Qm = 139, and estimated meff = 9.5 pg. The grey area shows the fitted
thermal spectral displacement density of the resonator, and the black curve the measured
spectrum, including the imprecision noise 1.61×10−28 m2/Hz. This spectrum was obtained
using a probe laser with a power of 500 µW. The red data shows the electronic noise
imprecision originating from the detector, whereas the blue curve shows the calculated shot
noise imprecision. The displacement spectral density of the resonator is depicted as the area
shaded grey.

As the probe power is increased, we observe an increase in signal strength. The signal
strength has an approximately quadratic dependence on the power, per Eq. (1b) and the fact that
PRSA = (2.12 RBWζ2

1 /Z)SPP, with RBW the resolution bandwidth of the spectrum analyzer and Z
its impedance. Since absorption of the laser light could lead to a local increase of the temperature
of the drum resonator, the associated increase of thermal fluctuations could lead to a scaling of the
signal with laser power that exceeds a quadratic dependence. This is observed in Fig. 8(b), where
several lines assuming different linear dependence of temperature with laser power are compared
to the measured signal strengths. We find that a temperature increase of 28 K per mW of incident
power best describes the observations. In Fig. 8(a), we also observe a mechanical frequency shift
with increasing probe power, which was repeatable and not dependent on fluctuations in the setup.
We speculate that this is at least in part due to the heating of the structure. The Young’s modulus
Ey in the elastic regime is modelled as Ey = (8.35 · 1010 − 2.34 · 107K−1T) N/m2 [63]. If the
frequency change would be fully ascribed to the change of the Young’s modulus, this would
predict a temperature rise of 83 K, which is not in line with the observed increase of ∼14 K in
Fig. 8(b). We thus conclude that also other mechanisms could contribute to the frequency shift.
We can exclude the possibility that the optical spring effect plays a significant role, from the
fact that its magnitude is only predicted to be on the order of a few Hz at maximum given the
system parameters [17], and from the fact that we do not observe the dispersive dependence of
the shift on laser wavelength that is characteristic for the spring effect. We hypothesize that the
reduction of frequency could be associated by a differential thermal expansion of the gold film
and the underlying layers, to induce a compressive stress in the film that lowers the frequencies
of flexural modes.

Figure 9(a) shows displacement spectral densities for various resonators with differing radii
of the suspended membrane, which are indicated per spectrum. The mechanical frequency of
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Fig. 8. (a) Recorded optical fluctuation spectra for different probe powers. The increase
is approximately quadratic in the probe power. There also occurs a frequency shift for
increasing power. (b) Increase of signal strength with probe power. The near-quadratic
dependence is readily visible. Three additional lines have been plotted, each of which
corresponds to an increase in temperature with probe power. This increase causes a deviation
from pure quadratic scaling.

the resonator generally increases as the size of the resonator decreases. As the drum decreases
in size, the noise floor also goes up. This can be explained by poorer optical coupling to the
mechanical system, since together with a decrease in the drum radius, there is also a decrease in
the size of the optical grating. The optomechanical transduction is thus lower. We remark that the
indicated diameters are only estimations: since the hole pitch is equal for all drums, the numbers
of holes differ from 9 holes for the 2.5 µm drum to 37 holes for the 4.5 µm drum. The actual
diameter is determined through the underetch of the holes. We notice that the drum with a radius
of 4 µm deviates from the trend in mechanical frequency, and that also its signal strength is lower
than expected. This could possibly due to the drum not being fully suspended, e.g. due to an
imperfect underetch of the membrane or an Au grain that connects the top and bottom Au films
after release. Another possible source of imperfect release is the material that remains at the
bottom of the holes due to Ga implantation of the Si sacrificial layer (see Supplement 1 section
7). Any form of connection would alter the mechanical mode shape which could reduce the
coupling to the plasmonic field. While these imperfections are not always seen, it indicates that it
would be interesting to investigate alternative fabrication methods, e.g. employing evaporation
and lift-off for the top film.

3.2.2. Resonant plasmonic transduction

Evidence for imperfect suspension of drums is also present in some of the mechanical fluctuation
spectra. Figure 9(b) shows an example RSA spectrum for a different drum with 4.5 µm radius
that features an anharmonic spectrum and multiple resonances at comparable frequencies. The
effective mass of these modes of unknown nature can hence not be ascertained, nor can its
optomechanical coupling strength be readily estimated. Here, we present a scheme to nonetheless
gain information on the optomechanical interaction strength, and specifically the vacuum
optomechanical coupling strength g0 [17], while shedding light on the role of the plasmonic
resonance on transduction. We use the strongest peak in the spectrum shown in Fig. 9(b).

Figure 10(a) shows measured optical reflectance as a function of the frequency of a tunable
laser, displaying a clear minimum within the laser range. The spectrum is fitted with the
single-resonance response Eq. (3) (fit parameters provided in caption). Including a displacement
dependence on the three parameters ωc, κex and κ0 in Eq. (4) allows describing the change
in reflectance with displacement, as outlined in Supplement 1 section 6. The fact that they
change with layer separation can also be seen from the simulations in Figs. 4(c) and 4(d). A first
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Fig. 9. (a) Displacement spectral density of different resonators. The radius of the
resonating membrane is indicated for each spectrum. As the radius of the suspended
membrane decreases, the mechanical resonance generally tends to increase. The coloured
area shows the background-subtracted spectral density of the resonator, whereas the lines
show fits to the measured spectrum. (b) An RSA spectrum, as obtained from a different
drum with a less regular mode spectrum. Both electrical and shot noise terms are present in
the background, where the former accounts for the slanted background.

order approximation is made for the variation of these parameters with the displacement. Of
particular interest is the optical frequency shift per displacement G ≡ ∂ωc/∂x, and the vacuum
optomechanical coupling strength g0 that is associated with such dispersive coupling [17]:

g0 ≡ Gxzpf =

√︄
ℏ

2meffΩm
G. (11)

Here, xzpf is the amplitude of the mechanical zero-point fluctuations.
Following Eq. (1), mechanical fluctuation spectra such as that in Fig. 10(b) are obtained. It

shows an example signal recorded on the RSA at a probe laser wavelength of 1498 nm. The
mechanical mode of the drum is seen as a peak in the spectrum. Figure 10(c) shows the detected
spectra on the RSA for different laser frequencies, showing a varying signal strength and also a
shift in mechanical frequency. The structure is expected to downshift in frequency with increasing
temperature as in Fig. 8(a), which is corroborated by our experiment as the shift varies as the
coupling of light to the plasmon mode varies. We note however that the maximal frequency shift
seems to occur approximately 2 THz away from the perceived optical resonance, which can be
seen by comparing the optical resonance spectra with the mechanical frequency shift spectra.
This behaviour is shown by other structures as well. This may be caused by a spectral variation
of absorbance or mechanical interaction with the supports, which may lead to additional stresses
that cause an additional frequency shift with deposited power. Of further note is that we observe
that the wavelength of maximum transduction can differ slightly from one mechanical mode to
another, as we report in Supplement 1 section 5.

Assuming a thermal motion spectral density, the derivative ∂R/∂x can be obtained from the
spectra presented in Fig. 10(c) through

PRSA(Ω) =
2.12 RBW

Z
|ζAC |

2P2
in

(︃
∂R
∂x

)︃2
Sth

xx(Ω), (12)

where RBW is the resolution bandwidth of the RSA and Z its impedance. The derivation of this
formula, as well as how to obtain the values for these parameters, is outlined in Supplement 1
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a. b.

c. d.

Fig. 10. (a) Optical reflectance of the drum shown in Fig. 9(b). The fitted parameters have
values of κ0/2π = 16.2 THz, ωc/2π = 198.8 THz, κex/2π = 0.8 THz, r0 = 0.91, φ = −0.14
rad. (b) Single power spectrum of the signal, obtained using a probe laser at 1498 nm and
a probe power of 690 µW. (c) Signal strength and mechanical frequency as a function of
optical frequency. (d) Partial derivative of reflectance with respect to position as a function
of optical frequency. The model is fitted to this data with a red line.

section 3. As such, the frequency-integrated signal under the peak is∫
PRSA(Ω)dΩ =

1.06 RBW
Z

|ζAC |
2P2

in
1

meff

(︃
∂R
∂x

)︃2 kBT
Ω

, (13)

where we note that the integration runs over all positive frequencies. In Fig. 10(d), the derived
values of m−1

eff (∂R/∂x)
2 are shown as a function of laser wavelength. The change of the parameters

in Eq. (4) to displacement can be estimated by fitting that equation to the transduction strength
spectrum shown in Fig. 10(d), where each of the derivatives with respect to position is fitted as a
constant, due to our linear approximation. This yields the values shown in Table 1 for this specific
structure. We note that in comparison to the values expected from simulations (Fig. 4), the
experimentally estimated modulation of intrinsic optical losses (due to absorption and scattering
to other modes) ∂κ0/∂x is relatively large. While the precise reason is not known, we remark
that the fact that our model assumes a single Lorentzian response is a significant simplification:
Because of the finite angular spread of the beam and finite size of the grating, multiple bands
are effectively probed simultaneously. Nonetheless, taking the measured value of dispersive
coupling x−1/2

zpf (∂ωc/∂x), the vacuum optomechanical coupling strength for this mode can be
readily estimated by multiplying with

√︁
ℏ/(2Ωm) in line with Eq. (11), giving g0/2π = 11.4 MHz.

3.2.3. Characterization of plasmonic force

We next turn to characterizing actuation of the membrane resonator through plasmon-induced
forces. To this end, we perform a pump-probe experiment in which we illuminate the sample
with a time-modulated drive laser at 1550 nm, while detecting the motion of the drum using a
probe laser at 1480 nm. Assuming dispersive coupling to a single optical cavity (resonator),
one expects the force exerted by the light on the mechanical resonator to equal ℏGn, where n
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Table 1. Table showing the fitted values for the dependence of various
parameters on position x . Another column is added with values for a

realistic effective mass of the mechanical mode.

expression relative value value for meff = 10 pg

(2π√meff )
−1 (∂ωc/∂x) 1.93 × 109 GHz/(nm

√︁
kg) 193 GHz/nm

(2π√meff )
−1(∂κ0/∂x) −1.70 × 109 GHz/(nm

√︁
kg) −170 GHz/nm

(2π√meff )
−1(∂κex/∂x) 1.73 × 107 GHz/(nm

√︁
kg) 1.73 GHz/nm

is the cavity occupancy. Thus, we express the force exerted on the system by the drive laser as
F(t) = ξn(t), where n(t) is the drive laser cavity occupancy and ξ thus the force per excitation in
the optical resonator. The plasmonic cavity occupancy is sinusoidally modulated at frequency Ω
by modulating the drive laser intensity, which subsequently generates an oscillating force that
drives the motion of the mechanical resonator according to

x(Ω) = χm(Ω)F(Ω), (14)

with χm = m−1
eff (Ω

2
m − Ω2 − iΩΓm)

−1 the mechanical susceptibility and position and force now
written in the Fourier domain. The induced motion is read out using the probe laser with power
Pp. Since we are far in the bad-cavity regime, we can assume the cavity occupancy, and hence
the force, to directly follow the modulation of the drive laser.

In order to study the linear response of the membrane to the applied force, a signal from port 1
of the VNA is sent to the IM, which modulates the drive laser around mean power P0, whilst the
output voltage from detector PD-2, detecting the signal from the probe laser, is sent to port 2 of
the VNA. The S-parameter S21, defined as S21(Ω) = V2(Ω)/V1(Ω) is expected to scale with the
mechanical susceptibility as

|S21 | = |ζ2 | |ζfilter |

|︁|︁|︁|︁∂R∂x |︁|︁|︁|︁Ppξ |χm(−Ω0)| |χIM |n̄, (15)

where
n̄ =

P0
ℏωd

κex

∆2
d + κ

2/4
(16)

is the mean drive cavity occupancy, and ζfilter is the measured transmission of the wavelength
filter, as detailed in Supplement 1 section 4.

The measured S-parameter can be seen in Fig. 11. From the magnitude of this measurement,
we can quantify the force per plasmon (normalized to mass). The S-parameter shows a resonant
mechanical response and demonstrates that the motion of the resonator is (partly) driven by
the optical field. Measuring a VNA response on a flat mirror reference yields the value of
|Sref

21 | = |ζ2 | |χIM |P0. Together with the directly measured constants ζfilter, Pp, Ωm, and Γm, as well
as the values of m−1

eff (∂R/∂x), κex, and κ that were determined in the previous section, this allows
using Eq. (15) to obtain an estimate of ξ/√meff , i.e., the force per plasmon divided by the square
root of the effective mass:

ξ
√meff

= 2.07 × 10−4 N√︁
kg

. (17)

It is interesting to compare this value to the case that the force would be solely associated with
dispersive optomechanical coupling parametrized through G. The equivalent force per photon
divided by the square root of the effective mass can be estimated from the value of g0 that we had
obtained:

ℏG
√meff

= g0
√︁

2ℏΩm = 1.28 × 10−6 N√︁
kg

. (18)

This analysis shows that the actual force exerted on the system is two orders of magnitude
larger than what would be expected from the optomechanical force, which we found earlier
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Fig. 11. A drive laser (29 µW oscillation amplitude) is used to drive the drum, while a
probe laser (1136 µW at 1480 nm) is used for readout. The S-parameter shown here shows
the response of the mechanical system to the modulation of the drive laser. It is expected to
scale with the mechanical susceptibility of the resonator. The phase undergoes a π phase
shift at resonance.

to closely approximate the electromagnetic force calculated from the Maxwell stress tensor.
This discrepancy is too large to be understood from uncertainties in the estimated parameters.
We thus conclude that another mechanism dominates the force induced by plasmonic fields on
the resonator. The most likely explanation is a photothermoelastic effect, whereby the heating
due to plasmon absorption in the gold membrane leads to a temperature gradient that induces
stress actuating the motion of the drum resonator [64]. It would be interesting to systematically
investigate this force and compare it to detailed calculations of the coupled optical, thermal,
and mechanical fields [64]. Such a study, complemented by experimental measurements that
study control over the photothermoelastic effect, e.g. by varying the thermal anchoring through
design and by studying the effect for different devices spanning a large range of frequencies,
could give useful insight in the various mechanisms at play, and the possible magnitude of
photothermoelastic and radiation pressure forces in nanoplasmonic systems and derived sensors.
This is however beyond the scope of the current study.

4. Discussion and outlook

In conclusion, we created a free-standing plasmonic gap waveguide system in which we
demonstrated optical readout of the nanomechanical vibrations of metallic drum resonators.
Efficient coupling to free space radiation allowed a displacement sensitivity of ∼10−14 m/

√
Hz

with near-infrared laser light. We identified incomplete release of the membranes as a fabrication
challenge. Better control over the yield and mechanical performance could be realised by inducing
controlled intrinsic stress in the membrane, through e.g. sputtering of metal films.

It was demonstrated that these structures can be optically driven by varying the intensity of a
pump laser. The plasmonic forces were measured to be much larger (∼ 100 times) than what is
predicted from the optomechanical force, or from the Maxwell stress tensor. We postulate that
this discrepancy may be caused by a large photothermoelastic effect that drives the mechanical
motion. This is an interesting observation, in part because in other reports on actuation with
nanoplasmonic fields the Maxwell stress tensor provided a more complete prediction of the
observed magnitude [37]. We see that in different designs the force can not only be significantly
enhanced beyond P/c, but also be multiple orders of magnitude larger due to photothermal
coupling. This could in fact provide an interesting route for active optical manipulation of
photonic properties, as well as coherent driving of resonators in sensing applications [10].

Indeed, the demonstrated transduction and actuation mechanisms could find specific application
in nanomechanical sensing, as they provide size-matched, broadband, and efficient interfacing
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with optical input and output fields. The relatively large active surface of metallic drum resonators
could make them amenable to various applications in mass or pressure sensing. Mass sensing
of trace gases nanoparticles, or proteins would benefit from having low-mass resonators with a
large ‘capture area’. Optical actuation and readout provides an interesting alternative to electrical
methods, where the required drive powers form a significant practical challenge [27]. The fact
that the resonators feature significant metal (Au) surfaces facilitates functionalization with (thiol)
chemistry to bind specific molecules. We note that the modest mechanical quality factors of ∼100
reported here could be potentially improved by investigating different materials and specifically
combinations of dielectric and metallic layers. The fact that plasmonic fields, and in particular
nanoscale gaps, are also very good sensors of refractive index due to e.g. masses or adsorbing
molecules could make hybrid mechanical and refractive index sensing especially appealing [65].
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