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S U M M A RY

Coherent diffractive imaging (CDI) is a family of computational imag-
ing techniques that uses iterative reconstruction algorithms to deci-
pher the information encoded in one or more interference patterns
to reconstruct a complex image of an object located in another prop-
agation plane. The lensless nature of these techniques makes them
well-suited for imaging with coherent extreme ultraviolet (EUV) or x-
ray illumination as refractive optics are limited at these wavelengths.
Imaging at such short wavelengths can enable imaging resolutions
that can not be obtained by a conventional visible light microscope.

In particular, this work investigates the use of CDI techniques in
combination with high-harmonic generation. High-harmonic gener-
ation (HHG) sources can generate EUV illumination beams with a
high degree of spatial coherence in a compact tabletop setup. In
the high-harmonic generation process, intense laser light is upcon-
verted to photons with frequencies that are high harmonics of the fre-
quency of the driving laser. As these sources produce very broad spec-
tra, typically some form of spectral filtering is required to meet the
temporal coherence requirements for CDI experiments. Such filter-
ing processes are highly inefficient, leading to sub-optimal use of the
available EUV radiation. In this work we use Fourier-Transform spec-
troscopy (FTS) to separate a set of nearly monochromatic diffraction
patterns from a broadband HHG diffraction pattern. These monochro-
matic diffraction patterns can used to reconstruct spectrally resolved
images through reconstruction methods that are similar to those ap-
plied in conventional CDI. This approach has the added benefit of
adding spectral resolution to diffractive imaging, so that it might be
possible to identify spectral features in a sample’s optical properties.

To generate these high-harmonic pulse pairs for FTS, we generate
infrared pulses with 25 fs pulse duration, 10 mJ pulses with a central
wavelength of approximately 800 nm. These driving laser pulses were
generated with the noncollinear optical parametric chirped pulse am-
plifier system described in Chapter 4. These infrared pulses were sub-
sequently converted into phase-locked pulse pairs using a common-
path interferometer that is based on two pairs of birefringent wedges
and a thin film polariser. This interferometer is described in detail
in Sec. 4.3. Then, in order to obtain phase-locked harmonics, the re-
sulting infrared driving laser pulses are focused at slightly separated
locations in a noble gas jet to upconvert them into a pair of almost
identical high-harmonic pulses.

In FTS-based imaging experiments, we illuminate a sample with
the HHG pulse pairs and record the far-field diffraction pattern as a
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x Summary

function of pulse-to-pulse time delay. The spatial separation of our
two harmonic beams results in spatial interference between two later-
ally sheared copies of the diffraction pattern. As a consequence of our
two beam harmonic-generation geometry, the far-field electric field is
formed by the interference between two laterally sheared copies of
the field that would be generated in a single beam geometry. As a
consequence, the spectrally separated diffraction patterns obtained
in these measurements are similar, but not identical to the standard
CDI case.

In Chapter. 5, we demonstrate an algorithm, called diffractive shear
interferometry (DSI), to reconstruct images from such diffraction pat-
terns, based on phase retrieval from the intensity information com-
bined with an object support. As a single diffraction pattern alone
does not contain sufficient information for a unique reconstruction,
the DSI reconstruction algorithm attempts to find a complex elec-
tric field that satisfies a finite object support prior, while simultane-
ously satisfying the measurement data. This approach is similar to
the approach used in most single-shot CDI experiments. Compared
to CDI, the DSI measurement signal contains information about the
phase derivatives in the direction of the shear at the cost of infor-
mation about the amplitude of the single beam field. In simulations,
we found that DSI image reconstruction would converge more ro-
bustly than traditional CDI measurement at comparable signal-to-
noise-ratios. Using DSI, we were able to reconstruct images at 5 dif-
ferent wavelengths simultaneously. However, like single-shot CDI,
unless the object is both finite size and has relatively well defined
edges, the basic DSI method requires significant prior knowledge
about the sample structure to sufficiently constrain the field solution
to be unique, which can be limiting for some applications. In Chap-
ter. 6 we demonstrate that it is possible to reconstruct complex images
of a sample without using an finite support prior from a set of DSI
measurements by scanning the relative orientation between the sam-
ple and the lateral shear between the beams instead. A single DSI
measurement contains information about the phase derivatives of the
single beam electric field on the detector and by rotating the shear
with respect to the object, the phase derivatives in other direction be-
come constrained as well. In this work it was demonstrated that this
extra information can be sufficient to find a solution for the object
without constraining the object size.

One of the advantages of coherent diffractive imaging techniques
is that it they reconstruct the full complex electric field at the sample.
In reflection mode, such phase difference can be easily attributed to
height differences of the reflecting surface. However, at research in
diffractive imaging, including the work in the previously mentioned
sections, has focused on transmission mode imaging. At the EUV
wavelengths generated by HHG sources transmission coefficients tend
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to be small. This limits applications of transmission mode imaging
with HHG sources to thin layers. While normal incidence reflection
coefficients are vanishingly small, towards grazing incidence the re-
flection coefficients approach one. This makes tilted-plane reflection
mode imaging a particularly promising candidate to extend imaging
with HHG beyond thin layers.

Such a geometry does come at a cost of added experimental and
computational complexity. While far-field diffraction between colin-
ear planes can be described by a straight forward Fourier transform
of the electric field, for the propagation between non-collinear planes,
an additional non-linear coordinate transformation is required. This
coordinate transformation depends on the tilt angle of the fields and
becomes very sensitive to the exact tilt-angle towards grazing inci-
dence.

While CDI itself requires accurate knowledge of the wave prop-
agation, a technique known as ptychography offers more flexibility.
One of the main strengths of ptychography is the ability to solve
for extra parameters other in addition to the complex sample and
illumination beam due to the diverse information present in the mea-
surement set. In Chapter. 7 we use that property to demonstrate an
auto-calibration algorithm that can calibrate the tilt-angle during a
ptychographic reconstruction. This algorithm adjusts the tilt-angle it-
eratively during reconstruction using an randomised search inspired
by the Luus-Jakoola algorithm. Using this approach we were able to
refine the tilt angle close to the correct value even when the initial es-
timates were off by more than 5 degrees, greatly improving flexibility
in reflection-mode lensless imaging.
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1
I N T R O D U C T I O N

1.1 imaging and microscopy

Improvements in imaging technology have frequently been a driver
of the advancement of scientific knowledge of the natural sciences.
For example, the discoveries of bacteria, blood cells, and microbes
by Antonie van Leeuwenhoek, were made possible by his skill in im-
proving the quality and magnification of microscopes of that time.
Pasteur was able to correlate bacteria with illnesses through the use
of microscopes, which was vital to our knowledge of epidemiology.
In addition, innovations in imaging techniques have seen various di-
agnostic applications in medicine [1, 2]. In industry, advanced imag-
ing techniques can be used as inspection tools for sub-micron sized
structures, such as those produced in the semiconductor industry [3,
4]. The main goal of this thesis is to extend capabilities for imaging
with high-harmonic sources, which generate at wavelengths where
the availability of high quality traditional optics is limited. To this end,
we have investigated several potential extensions of coherent diffrac-
tive imaging (CDI) methods [5]. In CDI, images are reconstructed
with information present in the diffraction patterns, which are gen-
erated by illuminating the sample with coherent light instead of us-
ing optics. The information in these diffraction patterns can often be
decoded computationally through iterative optimisation algorithms
based on knowledge of the propagation of coherent electric fields.
In particular, our goal is to combine the high resolution and phase
sensitivity offered by more conventional CDI methods with ways to
obtain spectral resolution, despite the coherence requirements set by
CDI. This would enable spectrally resolved imaging at wavelengths
where such capabilities have traditionally been limited. In this chap-
ter we will describe the challenges these imaging techniques might
solve and the advantages and limitations of various alternative imag-
ing methods.

1.2 high-resolution imaging

1.2.1 Diffraction limit

The smallest possible feature that any conventional microscope can
resolve is limited by a fundamental resolution limit. When a circular
lens is used to image a point source to the smallest possible spot, its
intensity profile will exhibit a pattern of bright and dark diffraction

3



4 introduction

rings, a phenomenon named Airy disks after George Biddell Airy [6],
who found a theoretical explanation in 1835. If two of those point
sources are spaced too closely, the disks in the focal plane will over-
lap, and it will become impossible to distinguish them. In general,
the smallest separation between two point sources that can still be
distinguished with a conventional microscope is determined by the
so-called diffraction limit. This limit, which was formally derived as
an interference effect by Ernst Karl Abbe [7] in 1873. This Abbe limit
can be expressed as

∆x =
λ

2NA
, (1)

where ∆x is the maximum achievable lateral resolution and NA =

n sin(θ) is the numerical aperture, which is determined by the half-
angle of a cone of light imaged to a spot and the refractive index n
of the imaging medium. While the NA of conventional visible light
microscopes has steadily increased over the centuries, it is physically
impossible for the focusing light cone to have a full angle that is larger
then 180 degrees. Even when using immersive oils, which raise the
refractive index of the imaging medium, and thus the NA, by around
a factor of 1.5, the maximum resolution of conventional visible light
microscopes are limited to about 170 nm.

1.2.2 Super-resolution imaging

A number of so-called super-resolution techniques have been devel-
oped to improve on this limit using light at optical wavelengths [8].
The most common of these can be split in two groups: Near-field tech-
niques and super-localisation techniques. The first of these groups
use the information contained in evanescent waves [9] such as wave-
guided or total internal-reflection modes. These type of waves travel
along interfaces and do not propagate perpendicular to the interface
(instead they decay exponentially in the direction of the normal. As
their phase does not propagate in the direction of the surface normal,
these waves are not diffraction limited and contain high resolution
information that is not present in propagating waves (see Sec. 2.1.2)
for a more detailed explanation).

Super-localisation methods, such as PALM [10] and STORM [11],
have been very successful in reaching resolutions beyond the NA of
the imaging system, often reaching sub-single digit nanometer reso-
lutions with illumination in the optical regime. In these techniques
fluorescent point emitters are attached to a specimen. After these
emitters are activated through photo-excitation, the fluorescent light
is imaged into diffraction-limited spots onto a detector. A series of
measurements is recorded in which only a fraction of the point emit-
ters are active and localisation methods are used to attribute spots to
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isolated point sources. The location of those point sources can be de-
termined by finding the center of the diffraction-limited spot, which
can be fitted with the accuracy of a fraction of the diffraction limit. A
point-wise high resolution image is subsequently build up through a
series of measurements in which different emitters are switched on
or off. While these techniques have been highly successful for var-
ious applications in biological imaging, they can be time intensive
and require chemical staining of specimen with point emitters that
bind to the specimen, something that is not possible for many other
applications.

1.2.3 Lens-based short-wavelength imaging

As the diffraction limit (Eq. 1) scales with the wavelength, shorter-
wavelength illumination offers an alternative path to improve beyond
the resolution offered by conventional imaging microscopes. In addi-
tion to enabling higher imaging resolution compared to optical micro-
scopes, x-rays have the additional benefit of deeper penetration into
samples that are opaque in the visible. For this reason, x-ray micro-
scopes are highly suitable for transmission imaging of thick samples
at the cost of the amplitude-contrast of images. Since both the real
and the imaginary part of refractive indices are close to unity for large
parts of the extreme ultra-violet (EUV) and x-ray regimes [12], there
is a lack of high NA refractive focusing optics. Fresnel zone plates
are commonly used as alternatives to refractive lenses. These grating-
like structures are designed to create a focus located at one of their
first diffraction orders [13]. The relationship between the field at the
zone plate and the field at one of its Fresnel diffraction planes can be
described by a Fourier transform (see Ch. 2). Therefore, the smallest
possible focal spot in the imaging plane is determined by the width of
the illuminated part of the zone plate (as it determines its band-limit).
However, binary absorption-based zone plates have very limited effi-
ciency, as only the +1st diffraction order is focused and half of the in-
tensity is absorbed in the grating structure, the theoretical maximum
on the efficiency is limited to 10%. It is possible to improve on these
numbers through the use of asymmetric, phase-modulating structure
profiles that suppress one of the first orders. By making use of blazed
gratings, focusing efficiencies of more then 50% have been reported
with 0.2 nm light [14]. For any zone plate design, the size of the zone
plate is limited by the smallest features that are possible to fabricate
and due to the increased complexity of these high efficiency zone
plates, their NA is typically� 1. However, due to their shorter wave-
lengths these microscopes still offer a large resolution improvement
on conventional microscopes, while hard x-ray microscopes can offer
better resolution than our methods can achieve with EUV illumina-
tion. Sub-100 nm resolutions have been reported with full field x-ray
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transmission, using soft X-rays from lab-scale plasma sources [15, 16].
Scanning transmission x-ray microscopes (STXM) [17] create an im-
age through point-scanning of an object in the focal plane of a zone
plate, while recording the intensity at a scan position. The resolution
of the images generated with these methods is limited by the spot
size of the illumination. As advantage when compared to the full
field method described above, these methods only require a single
zone plate, as opposed to a combination of both a condenser and
an imaging lens. In addition, the combination of a point scanning
imaging formation process that is not sensitive to the spatial distribu-
tion on the detector enables a straightforward way to record spatially
resolved fluorescent signal excited by the illumination beam, this ad-
ditional chemical specificity can be highly beneficial to applications
in material science. However, as a trade-off these methods require
dense point scanning, depending on the desired resolution. As a re-
sult, depending on the field of view, measurement times are typically
orders of magnitudes larger, and its resolution is likewise limited by
the diffraction-limited spot size of the focusing optics.

1.3 coherent diffractive imaging

The main subject of study in this thesis are coherent diffractive imag-
ing (CDI) methods [5, 18]. This is a group of computational imaging
techniques that try to reconstruct the so-called ’exit wave’, which is
the complex wave scattering from a sample, from one or more diffrac-
tion patterns, by solving the inverse scattering problem through itera-
tive optimisation. As focusing elements are not used for image forma-
tion, these techniques can avoid the resolution degradation induced
by poor optics, which makes them especially appealing in imaging
fields where quality lenses are not available. The NA of such imaging
systems is determined by the largest scattering angle θs between rays
of light that are collected on the camera, as illustrated in Fig. 1.

CDI of non-periodic samples is usually subdivided into two main
groups of methods: In the first group, which we will refer to as con-
ventional CDI (cCDI), the so-called ’exit wave’, which is the field scat-
tering from a sample, is reconstructed from a single diffraction pat-
tern. These methods extract the phase information that is encoded in
an over-sampled diffraction pattern through iterative algorithms [19],
finding a solution that satisfies both the measurement and one or
more constraints on the object. In particular, Fienup’s hybrid-input
output algorithm [20] has been highly successful in reconstructing
real objects, illuminated with plane-wave illumination. However, in
the case of complex objects strong prior knowledge of the specimen
structure is typically necessary for successful image reconstruction in
cCDI.



1.3 coherent diffractive imaging 7

ϴs

specimen

Camera

z

x

a)

ϴs

specimen

Camera

z

x

b)

Figure 1: Illustration to explain the NA of a CDI imaging system by com-
parison to a simple conventional imaging system. a) The resolu-
tion of a perfect lens based imaging system is determined by the
largest scattering angle that can be collected by its collector lens.
b) In the case of CDI, if the field on the camera can be perfectly
reconstructed, the information content (and thus the resolution) is
identical as if the same light was collected by a lens with the same
aperture as the camera and imaged through a perfect imaging sys-
tem. Thus the highest NA that can be achieved is determined by
the light with the largest scattering angle θs that can be detected
on the camera, as opposed to the largest scattering angle θs that
collected by the lens and reimaged without loss of information.
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The issues with the reconstruction of complex objects have led
to the development of ptychographic CDI (pCDI) by Rodenburg in
2004 [21]. In pCDI, a series of diffraction plane intensity images is
captured on a camera. By scanning the transverse position of the sam-
ple (or less commonly the illumination with respect to the object), the
area of the object that is illuminated by a confined illumination beam
is changed at each camera exposure. If the overlap in area between
different scan positions is sufficient, a data set is generated that is rich
in ’diverse’ information, relaxing the need in cCDI for strong object
priors to constrain the problem. This information is one of the biggest
features of ptychography as it makes it possible to solve for more vari-
ables than just the 2D exit wave, as the inverse problem for standard
ptychography is highly overconstrained. Almost all modern ptychog-
raphy algorithms are able to reconstruct the complex specimen im-
age and complex illumination function separately, following the ap-
proach of the extended ptychographic iterative engine algorithm [22].
Not only does this decouple the specimen image quality from spher-
ical aberrations in the illumination function, this also enables the use
of ptychography as a wavefront sensing tool with a resolution that
matches its imaging resolution, which was recently demonstrated in
our group [23]. In addition to solving for the complex illumination
and object functions, recent ptychographic algorithms have shown to
be able to simultaneously solve for a stack of 2D object layers [24, 25],
to deal with partial coherence by solving for mutually incoherent spa-
tial illumination modes [26, 27], or to solve for different spectral com-
ponents [28, 29] and various other experimental parameters. In trans-
mission electron microscopy, a near-diffraction-limited resolution of
0.39 Å has been demonstrated. This is a significant improvement com-
pared the resolution currently obtainable with aberration-corrected
conventional microscopes [30].

Fourier-ptychography [31] is a related lens-based technique that
records a series of images using a low-NA, wide field-of-view, while
scanning the angular spectrum sampled by the lens is scanned by
changing the illumination angle. These methods have shown high
NA and very wide field-of-view simultaneously.

While the advantages of ptychography over conventional CDI out-
weigh the disadvantages for most applications if acquisition time and
exposure times are not limiting factors, traditional CDI methods are
still a common technique for applications where these factors are lim-
iting such as the x-ray or electron imaging of degradable biological
structures [18].

Different types of coherent diffractive imaging techniques have seen
applications in various fields of microscopy where the use of op-
tics have traditionally been limited, such as electron and x-ray imag-
ing [27, 30]. Or in imaging with optical or terahertz illumination [32],
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for the phase contrast that these methods offer at wavelengths where
many materials are transparent.

Related computational methods have also found widespread appli-
cations in the fields of near infrared and radio astronomy. While the
waves measured by these telescopes are incoherent, interferometric
methods can be applied in order to obtain a signal that is the spatial
Fourier spectrum of the celestial object, which is identical to relation-
ship that exist between the far-field intensity pattern and an object in
coherent imaging. In fact, the first practical iterative phase retrieval
algorithms, applicable to the far-field CDI imaging problem were de-
veloped by Fienup for radio astronomy [20, 33]. Recently, such meth-
ods where used successfully to reconstruct an image of a black hole
with the event horizon telescope [34, 35].

1.4 comparison of short-wavelength sources

Most photon-based CDI experiments so far have been performed
using large scale x-ray facilities, such as synchrotrons [26, 36] or
free electron lasers [37, 38]. Such facilities offer very high photon
flux at very short wavelengths, and wavelength tunability through
monochromators. While the light produced from synchrotons does
not satisfy the stringent coherence requirements of CDI, due to the
very high brightness of these sources it is feasible to make use of
spatial and spectral filtering to generate beams that have coherence
properties that are sufficient for diffractive imaging, especially when
combined with algorithms that model the source as a sum of inco-
herent modes [26, 27]. The high brightness these sources provide can
enable sufficiently low single-acquisition exposure times to combine
diffractive imaging methods with tomographic methods to produce
nanoscale resolution 3D images of various objects [39]. Such meth-
ods have been used to image complex structures such as computer
chips [40], as shown in Fig. 2. However, these facilities are expen-
sive to operate and access, thus measurement time is typically lim-
ited. Furthermore, these measurements usually have to be planned
and approved months in advance, in strong contrast with how micro-
scopes are typically used for most applications. In recent years, high-
harmonic generation (HHG) has shown to be a promising lab-scale
alternative to these large-facility sources [41–43]. In such a source,
photons from a high intensity driving laser are up-converted inside a
medium into a broad spectrum of harmonics of the fundamental fre-
quency through the highly non-linear processes described in Sec. 4.1.
Wavelengths produced by these sources can range from photons in
the ultra-violet regime to soft x-rays with cut-off frequencies in the
water window [44].

While these sources are low in flux (typical energy-conversion effi-
ciencies with infrared driving lasers range from 10

−5 to 10
−8 for gen-
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Figure 2: Ptycho-tomographic reconstruction of an Intel microprocessor,
taken from Holler et al. [40]. Authors achieved a resolution of 14.6
nm in all directions.

eration in noble gases [45]), they have the excellent intrinsic spatial
coherence properties needed for coherent diffractive imaging. Coher-
ent diffractive imaging experiments with high harmonics frequently
achieve a resolution in the order of the illumination wavelength, and
in recent years resolutions down to 12 nm have been reported [46,
47].

1.5 multiplexed imaging

At its core, imaging techniques are tools to obtain information about
the spatial distribution of a specimen. For a conventional imaging
system with a detection scheme that is insensitive to wavelength, this
information is limited to the wavelength-averaged, depth-integrated
absorption or reflection coefficients of the sample. While this informa-
tion is sufficient for many applications, it can be beneficial to obtain
signals that contain different types of spatially-resolved information,
especially if more than one signal can be obtained simultaneously.

1.5.1 Phase-contrast imaging

As a wave phenomenon, light is characterised by both amplitude and
phase. Like its amplitude profile, the spatial phase profile of scat-
tered light contains structural information of the scattering object.
Light waves propagating through different parts of a specimen ex-
perience varying amounts of phase delay depending on the refractive
index distribution of the traversed material. Furthermore, imaging
phase distributions offer a way to resolve structures that offer no ab-
sorption contrast. A significant breakthrough in the field of phase
sensitive imaging occured in 1935, when Frits Zernike invented the
phase-contrast microscope [48] as a way to image tiny refractive in-
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dex variations in transparent samples. These microscopes image both
the unscattered and the diffracted light from the specimen plane to
an image plane. However, the geometry of these phase-contrast mi-
croscopes is set up in a way that induces a π

2 radian relative phase
shift between the scattered and the non-scattered light before they
arrive at the image plane. After attenuation, the unscattered light in-
terferes destructively (for a positive phase contrast microscope) with
the diffracted light at the image plane. As these two fields cancel al-
most entirely, small variations in phase can be visible as significant
amplitude variations in the image plane. Since their invention, these
types of microscopes have been a commonly used tool in biology [49].
While these microscopes offer a contrast mechanism that can detect
even small phase curvatures, they are not suitable for more quan-
titative phase reconstructions as they suffer from inherent imaging
artefacts. For example, as low-spatial frequency components of the
scattered field tend to follow the same delay path as they unscattered
field, their phase is not reconstructed, which results in amplitude ha-
los at the edge of slowly varying features in the image. Another big
step forward in the application of phase to imaging was made in
1948, when Gabor [50] discovered holography. In holographic imag-
ing methods the interferometric signal of a scattered field with a
known reference wavefront is measured on a photographic plate or
camera. The phase difference between the scattered and the reference
field is encoded in their interferometric cross-terms, which can be
isolated from the recorded signal to measure the phase through vari-
ous read-out mechanisms, some of which are described in Sec. 3.2.1.
The main advantage of holographic methods compared to the phase-
contrast microscope is that the phase reconstruction is quantitative.

The CDI-like methods explored in this thesis can solve for the full
electric field at the specimen plane, therefore they offer many of the
same phase-contrast benefits offered by the methods described above.
Compared to holography, CDI imaging methods have less complex
optics and alignment challenges due to either the difficulty of isolat-
ing the cross-terms for on-axis holography or the experimental com-
plications that are associated with the requirement of a well-known
reference wavefront for off-axis holography, at the cost of more com-
putational complexity, and in the case of pCDI longer acquisition
times.

1.5.2 Imaging spectrometry

Spectral resolution offers an additional channel to add information to
imaging modalities. Such information can be used in various imag-
ing applications to distinguish the scattering contribution of different
chemical components. For example, spectrally resolved imaging tech-
niques have been in use at optical and infrared wavelengths for appli-
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cations such as earth remote sensing, where it is used to distinguish
vegetation as well as different mineral components and environmen-
tal monitoring [51, 52]. In medical diagnostic applications such mea-
surements can be used to delineate healthy tissue from cancer tis-
sue [53]. In astronomy it is used to detect spatially resolved chem-
ical abundances to understand evolutionary processes in stars and
galaxy formations [54, 55]. In x-ray imaging experiments, K, L and
M absorption edges are used to enhance chemical contrast. At those
wavelengths spectrally resolved imaging can be achieved in various
ways such as tunable monochromators [56], or specialized detectors
that can measure single x-ray photon energies [57]. However, such ca-
pabilities have been lacking for imaging with high-harmonic sources.
Spectrally resolved imaging detectors such as those that are used in
the x-ray regime are currently not yet available, and using tunable
monochromators can lead to impractically long measurement times
due to the low flux of these sources.

In some cases it is possible to use the diverse information present in
data sets used in ptychographic CDI to solve for the spectral weights
of different spectral components with multiplexed ptychography [28].
While these methods have been used to solve for broadband high har-
monic spectra [29, 58], it is typically only possible to reconstruct the
different spectral components in specific conditions: 1) spectra that
are well described with a limited number of narrow peaks (which
holds for lower order harmonics, but is less applicable to higher har-
monic orders), with considerable additional prior information about
spectral components and/or very strong object priors. In the work
of Ch. 5 and 6 we have investigated an alternative method that com-
bines Fourier-transform spectroscopy (FTS) [59] with diffractive imag-
ing methods, which in principle should be able to resolve even very
broad harmonic spectra. It turns out that these methods bear a strong
conceptual similarity to a group of techniques in astronomy, which is
called double Fourier interferometry [60], in which the stellar signal
of different baseline telescopes is interfered through FTS interferome-
try to build a spectrally resolved Fourier-plane signal of the object.

1.5.3 Outline of thesis

In the work underlying this thesis several methods were investigated
to further extend lensless imaging with high harmonic sources. The
main part of this work is described in chapters 5-7, which are based
on published papers that were the result of these investigations. Chap-
ters 2-4 are intended to give more context and explanation to the
methods and experimental setups in these experiments. In Ch. 2,
scalar diffraction theory is discussed, which describes the propaga-
tion of coherent light through free space. In particular, Sec. 2.1 dis-
cusses how quantitative relations for the propagation between paral-
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lel planes can be obtained, which forms the basis for most conven-
tional CDI algorithms. In Sec. 2.1.5, the theory of propagation be-
tween non parallel planes is considered, which is used as a basis for
our tilt-plane ptychography algorithm in Ch. 7.

Then, in Ch. 3, an overview is given of the working principles of
difference types of lensless imaging. First the phase problem is intro-
duced in Sec. 3.1. Then in Sec. 3.2 a number of methods and algo-
rithms are discussed that reconstruct the electric field at the detector
from a single diffraction pattern, for these methods either significant
object priors or reference waves are required. Next, in Sec. 3.3, ptycho-
graphic methods are discussed. In Sec. 3.4, the working principles of
the DSI algorithms used in our EUV experiments is explained. Then,
in Sec. 3.5 the sampling and coherence requirements in CDI-like meth-
ods are discussed.

Chapter 4, describes the experimental setups for the EUV DSI ex-
periments. First, in Sec. 4.1, it is briefly explained how HHG can be
understood in a simplified semi-classical picture, in which the interac-
tion of the driving field with the medium is described classically after
a tunnel-ionisation event. This is followed by a description of the in-
frared driving laser system used to generate harmonics in our EUV
experiments in Sec. 4.2. Then, an experimental description is given of
the interferometry setup used to generate infrared pulse pairs from
this driving laser and the HHG generation setup that is used to up-
convert these infrared pulses to phase-locked high harmonic pulse
pairs Sec. 4.3.

The experimental work in this thesis can be subdivided in two
computational imaging approaches: 1) Diffractive shear interferom-
etry, which is a method we have developed to combine the spectral
resolving power of Fourier-transform spectroscopy with the lensless
imaging qualities of coherent diffractive imaging methods to enable
hyperspectral diffractive imaging. This method is the basis of the arti-
cles described in Ch. 5, in which strong object priors are used to solve
the inverse scattering problem and Ch. 6, in which the sample is ro-
tated through an asymmetric illumination profile in order to obtain a
more diverse data set, constraining the inverse problem to an extent
that a finite object support is unnecessary. Both of these experiments
were preformed with the high-harmonic generation setup described
in Ch. 4. 2) In the work described in Ch. 7, we have developed a
new image reconstruction algorithm for ptychographic CDI, that can
calibrate the tiltangle for ptychography in a tilted-plane reflection ge-
ometry.





2
E L E C T R O M A G N E T I C WAV E S A N D D I F F R A C T I O N

2.1 scalar diffraction theory

The computational imaging methods described in this work require a
direct quantitative link between the electric field at the imaged spec-
imen and the field at the detector. In the first part of this chapter,
its is described how this link can be obtained from scalar diffraction
theory.

2.1.1 The scalar wave equation

In the absence of charged particles, the electric-field component E(r, t)
of monochromatic light, with an optical frequency ν, that is travel-
ling through a linear, homogeneous, and isotropic medium can be
described as a scalar wave,

E(r, t) = R (E(r)exp[−2iπνt]) , (2)

where E(r) (apart from a spatially invariant phase-factor) is the instan-
taneous field at t = 0 and satisfies the scalar wave equation, which is
given by

∇2E(r, t) − n
2

c2
∂2E(r)

∂t2
= 0. (3)

Where, n is the refractive index. It follows from applying the wave
equation on Eq. 2 that the field E(r) needs to satisfy the Helmholtz
equation, which is given by,

∇2E(r) + k2E(r, t) = 0, (4)

where k = 2πνnc , is the wavenumber of the optical wave.
There are two common approaches for finding a solution for Eq. 4

in the case of free space propagation.
The first approach, which was developed by Kirchhoff [61] and

Sommerfeld [62], makes use of Green’s functions to derive a real-
space representation of wave propagation from a 2D aperture to a
point behind the aperture.

In the second approach, the angular spectrum method (ASM), the
field in a plane is effectively described as collection of planewaves
propagating in different directions from one plane to a parallel plane.
This approach treats the propagation of the field in terms of its 2D
Fourier components.

15
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In the next section, we will follow the angular spectrum method to
derive diffraction integrals, as the derivation is less mathematically in-
volved compared to the derivation with Green’s functions (and both
methods have been shown to produce identical results [63]).

2.1.2 Angular spectrum method (Fourier space representation)

In the angular spectrum method, the instantaneous electric field E(r)
is expanded over two orthogonal directions x and y to obtain a 2D
Fourier spectrum:

E(x,y, z) =
∫ ∫∞

−∞ Ê(kx,ky, z)ei(kxx+kyy)dkxdky. (5)

This expansion can simplify calculations if the Fourier components
of the field at an area of interest (such as the surface of a detector)
in some target plane can be accurately described with only a limited
amount of spatial frequency components in the source plane. This
is the case when either the spatial frequency spectrum at the source
plane is band-limited (which suggests a smooth real-space field distri-
bution) or if only a limited number of spatial frequency components
reach the area of interest at the target plane (which suggests that this
area of interest only collects a small range of scattering angles). If this
expression is inserted into the Helmholtz equation, the problem of
finding a solution for the electric field distribution can be simplified
to solving the following differential equation in z:

(k2 − k2x − k
2
y)E(kx,ky, z) +

∂2E(kx,ky, z)
∂z2

= 0, (6)

for which we can find a wave-like solution of the form:

Ê(kx,ky, z) = Ê(kx,ky, 0)Ĥ(kx,ky, z), (7)

where,

Ĥ(kx,ky, z) = e±ikzz, (8)

which is known as the propagator in reciprocal space or the optical

transfer function (OTF) in real space, and kz =
√
k2 − k2y − k

2
x. For

high transverse spatial frequency components k2y + k2x > k
2, kz will

be imaginary, in which case the multiplicative factor is a real negative
exponential function of z. After propagation over macroscopic dis-
tances, these components will have decayed to a point that they can be
neglected. Thus the information about the fastest varying features in

the source plane is spatially low-pass filtered to
√
k2x + k

2
y < k = 2π

λ

while propagating to the target plane.
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If equation Eq. 8 is inserted into Eq. 5 and solutions propagating
in the positive z direction are considered, we obtain the following
expression for the time-dependent field at a plane at a distance z:

E(x,y, z, t) =
∫ ∫∞

−∞ Ê(kx,ky, 0)ei(k·r−2πνt)dkxdky. (9)

Instead of as a Fourier decomposition, this expression can also be
interpreted as a superposition of plane waves propagating in real
space at different angles with wavevector k = (kx,ky,kz). This is
illustrated in Fig. 3.

Figure 3: Illustration of propagation of spatial frequency components. The
purple vector shows the propagation direction of a component
(kx = 0,ky = 0) of the field that is constant over the origin (=
x,y) plate. The red vector shows the propagation direction of the
component that is oscillating with spatial frequency ky at an angle
of θ = arcsin(ky/k) with the incident beam. Finally blue shows the
propagation direction of a spatial frequency component for which
both kx and ky are non zero.

Using this relation (Eq. 9), numerical propagation of the field from
one plane at z = z to a parallel plane at some other position z = z ′

can be accomplished through the following steps:

1. An inverse 2D Fourier transformation of the field in the object
plane to calculate the Fourier spectrum.
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2. Multiplication of the Fourier coefficients with phase factors Ĥ(kx,ky)
to propagate the field.

3. 2D Fourier transformation of the propagated Fourier spectrum
to find the field at a parallel plane.

Or, when written as an equation:

E(x,y, z ′) = F
(
F−1 (E(x,y, z)) Ĥ(kx,ky, z− z ′)

)
, (10)

where F denotes a 2D Fourier-Transformation over x and y.

2.1.3 Rayleigh-Sommerfeld theory (Real-space representation)

While the derivation of the real space representation is beyond the
scope of this thesis (see Ch. 3 of Goodman [64] for an excellent trea-
tise), we will discuss the result briefly as it is used as a starting
point for calculating propagation between non-parallel planes that
is discussed in Sec. 2.1.5 (which we have used as a theoretical ba-
sis for the work of Ch. 7). Sommerfeld [62] derived two so-called
Rayleigh-Sommerfeld solutions. These solutions describe the propa-
gation through free space of a field at points P1, located at the surface
of a planar aperture at z = 0, to observation points P0 (under the as-
sumption that all contributing waves are travelling outwards from the
aperture to the observation points). Under the additional assumption
the separation between P0 and P1 is much larger than the wavelength,
the first Rayleigh-Sommerfeld solution can be approximated by the
following relationship (see Eq. (3-51) of Goodman [64]):

E(P0) =

∫ ∫
Σ

E(sx, sy, 0)expik|
−→r01|∣∣−→r01∣∣ cos(θ)dsxdsy, (11)

where −→r01 is the vector that points from P0(x,y, z) to P1(sx, sy, 0), the
integral is over all the points (sx, sy) on the surface of the aperture,
and θ is the angle between the surface normal and −→r01. This config-
uration is shown in Fig. 4. As there is no bound on the size of the
surface of the aperture, this relationship can also be used to describe
the propagation through free space.

Eq. 11 can be interpreted as a mathematical formulation of the
Huygens-Fresnel principle. This principle states that all points on a
wavefront behave like secondary point sources emitting (hemi-)spherical
waves radiating in the direction of propagation.

2.1.4 Fresnel and Fraunhofer approximations

For many optical problems, it is possible to make additional approx-
imations to these diffraction integrals in order to greatly simplify
diffraction calculations. For most problems the optical geometry of
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Figure 4: Illustration of scalar diffraction. Light incident from infinity, indi-
cated by the black vector, scatters from points (P1) on an aperture
(with aperture plane coordinates (sx, sy, 0)) to the points on a co-
linear plane with planar coordinates (x,y, z) located at a distance
z from the aperture plane. r01 is the green vector pointing from
a observation point (P0) to P1. Adapted from chapter 3 of Good-
man [64]

.



20 electromagnetic waves and diffraction

the problem is such that only a small range of propagation angles
travel from the source plane to the area of interest at the observation
plane, so that the z-components of the wave vectors arriving in that
area are much larger than their lateral components k2z >> k2x + k

2
y.

In such situations, kz can be approximated by means of a 1st-order

Taylor-expansion: kz ≈ k−
k2y+k

2
x

2k2
, which can be inserted in the recip-

rocal space propagator (Eq. 8) to obtain,

ĤF(kx,ky, z) = eikze−i
k2x+k

2
y

2k z. (12)

While it is possible to use this relation to numerically propagate fields
in a way that is similar to how fields are propagated in the angular
spectrum method, an expression can be derived in the real-space rep-
resentation that is less expensive to calculate. To this end, Eq. 12 can
be Fourier-transformed analytically to find a propagator in real space
given by,

HF(x,y, z) = eikz
∫ ∫
dkxdkye

−i
k2x+k

2
y

2k zei(kxx+kyy) (13)

= eikz
−iπk

2z
eik

x2+y2

2z (14)

Next, if we use this function to write Eq. 8 as a convolution in real
space, we recover the following real-space diffraction integral:

E(x,y, z) = E(x,y, 0)~HF(x,y, z), (15)

= eikz
−iπk

2z

∫ ∫
Σ

dsxdsyE(sx, sy, 0)eik
(x−sx)

2+(y−sy)
2

2z ,

(16)

where sx/y are the transverse coordinates of the field at z = 0. This
result is called the Fresnel diffraction integral. This expression shows
that in the paraxial approximation the field at an observation plane is
the Fourier transform of the product of a quadratic phase curvature
and the field at z = 0, which can be made more explicit by rewriting
Eq. 16,

E(x,y, z) ∝ eikzeik
x2+y2

2z

∫ ∫
Σ

dsxdsy{
E(sx, sy, 0)eik

s2x+s
2
y

2z

}
e−i2π(usx+vsy), (17)

Where u = kx
2πz and v = ksx

2πz are the spatial frequencies of the aperture-
plane field . An identical expression can also be derived starting from

Eq. 11 under the assumption that (x−sx)
2+(y−sy)

2

z2
<< 1 as is shown

in Ch. 4.2 of Goodman [64]. As Eq. 17 only requires a single Fourier-
transformation to calculate the diffraction-plane field, numerical im-
plementation through fast Fourier-transform algorithms are compu-
tationally inexpensive, and under the relative far-field conditions in
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which the paraxial approximation is valid, have sampling conditions
than are typically less restrictive than those of the angular spectrum
method.

In the optical far-field k(s2x+s
2
y)max

2z << 1, the diffraction integral can
be simplified further, in this case the quadratic phase term under the
integral varies sufficiently slowly to be treated as constant. which is
called the Fraunhofer or far-field approximation. This approximation
leads to the following Fraunhofer diffraction integral:

E(x,y, z) ∝ eikzeik
x2+y2

2z

∫ ∫
Σ

dsxdsy

{E(sx, sy, 0)} e−i2π(usx+vsy). (18)

As the the pre-factor phase terms do not influence the measured
far-field intensities, but only the beam divergence, they are often ne-
glected in far-field propagation calculations. While the true far-field
conditions are quite stringent, Fraunhofer propagation formulas can
often still be used to predict diffraction intensities with good accu-
racy, even when strict far-field conditions do not apply, given that the

phase curvature is small:
(
k(s2x+s

2
y)max

2z < 1
)

. The error induced by
not taking this phase curvature into account in such cases is mostly
limited to misjudging the degree of convergence/divergence of the
field, which is not relevant for all applications.

2.1.5 Tilted plane diffraction

The angular spectrum method as well as the Fraunhofer and Fresnel
diffraction integrals only describe the propagation of light between
parallel planes. However, for some applications, it can be beneficial
to do imaging in a geometry in which the object and the detector
planes are non-colinear. In particular, for imaging with illumination
at extreme-ultraviolet wavelengths such as those emitted by high-
harmonic sources. In that spectral range most materials tend to be
opaque and normal incidence reflection coefficients are low, while re-
flectivities for scattering angles that tend towards grazing incidence
are close to unity. Such a tilted-plane reflection geometry is illustrated
in Fig. 5. In the work of Ch. 7, we have developed a tool that helps
calibrate the scattering angle in such a geometry.

As the Rayleigh-Sommerfeld formulation of Eq. 11 describes the
propagation from a planar screen to a point in 3D space, it could
in principle be directly implemented to calculate propagation of the
field from a screen to all points on a tilted surface separately, how-
ever, using direct integration, such calculations are much slower than
the Fast Fourier Transform methods used in the angular spectrum
method or for calculating Fresnel diffraction. As the iterative algo-
rithms used in CDI need to repeatedly propagate the field in between
planes, calculations with the Rayleigh Sommerfeld integral would be
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prohibitively slow. However, is possible to use a coordinate transfor-
mation to far-field intensities measured on the detector to find the
Fourier-space intensities of the specimen field, as they would have
been measured in a colinear geometry.

θt

z

r01

r21

x

y

sy
sx

P0

P1

z0

Figure 5: Tilted-plane reflection geometry. A beam incident from infinity
(propagating in direction −→r21) reflects from a sample surface and
scatters from a point P1 on the sample to a point P0 on a detector.
−→r10 denotes the vector pointing from P1 to P0, while −→r0 is the vec-
tor from P0 to the origin of the sample coordinates and z0 is the
distance between the origin sample coordinates and the origin of
the detector coordinates. θt is the tilt angle between the incident
beam and the normal (ẑ) of the surface of the specimen. The sam-
ple plane axes are denoted by (ŝx, ŝy), while (x̂, ŷ) denote the the
detector plane coordinates.

Here we will follow an approach that is based on the pioneering
work of Patorksi [65] and Rabal [66]. In this approach, Fraunhofer-
like approximations are made to the Rayleigh-Sommerfeld diffraction
integral to find a simple map from tilted-plane coordinates to spatial
frequency coordinates of the object. In later work, this problem has
also been treated with Fresnel-like approximations [67], and with a
angular spectrum approach [68].

Consider the Rayleigh-Sommerfeld integral (Eq. 11) for a field that
scatters from a point P1 on a reflection surface to point P0 at a non-
colinear detector plane. The detector normal is assumed parallel to
the incident beam in our configuration. The distance between a point
P1 on the reflective surface to a point P0 on the detector is given by

r01 =

√
(z0 − sx sin θt)

2 + (x− sx cos θt)
2 + (y− sy)2, (19)
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where θt is the angle of between the two planes. sx and sy are object-
plane coordinates, x and y are detector-plane coordinates, zo is the
distance from the origin of the object plane to the origin of the de-
tector plane, r01 is the distance between points P1 and P0, and ro is
the distance from the origin of the object-plane to point P0. r01 can
be rewritten as a function r0 instead of z0, which gives the following
expression,

r01 =

√
r20 + (s2x + s

2
y) − 2syy− 2sx

[
x cos(θt) + sin(θt)

√
r20 − x

2 − y2
]

.

(20)

As long as the r20 is much larger than the other terms, a first order
Taylor expansion of the form

√
1+ ε = (1+ ε

2 ) can be used to expand
the root of Eq. 20, which we can use to derive the following equation:

r01 ≈ r0+
(s2x + s

2
y) − 2syy− 2sx

[
x cos(θt) + sin(θt)

√
r20 − x

2 − y2
]

2r0
.

(21)

Next, this expression for r01 can be filled in the Rayleigh-Sommerfeld
diffraction integral to obtain a Fresnel-like tilted-plane diffraction in-
tegral. For calculating the amplitude factor that depends on r01, all
terms beside r0 can be dropped with little loss of accuracy under the
conditions where the first order Taylor approximation is valid, while
for the phase term all terms must be kept (as relatively small changes
in phase can result in significant differences in diffraction intensities).
This results in the following expression:

E(P0) ∝ eikr0e
ik x

2+y2

2r0

∫ ∫
Σ

dsxdsyE(sx, sy, 0)eik
s2x+s

2
y

2r0

e

−i

sy kyr0 +sx k
[
x cos(θt)+sin(θt)

√
r2
0
−x2−y2

]
r0


. (22)

This equation has an almost identical form to Eq. 17. However, it
contains the following re-scaled spatial frequencies

u =

[
x cos(θt) + sin(θt)

√
r20 − x

2 − y2
]

λr0
(23)

v =
ky

λr0
. (24)

These two equations form the basis of the forward coordinate trans-
formation used in Ch. 7.
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L E N S L E S S I M A G I N G

3.1 the phase problem

The relationship between a coherent 2D field scattering from a sam-
ple, which is frequently referred to as the exit wave, and the same field
propagated to a parallel detector plane, separated by a distance z, can
be described by,

E(xd,yd) = Pzψ(x,y). (25)

Here, E(xd,yd) and ψ(x,y) are the detector and sample plane fields
respectively, Pz is a function describing the propagation between the
two planes (see Ch. 2), x and y are the 2D sample plane coordinates,
while xd and yd are detector plane coordinates.

When the complex electric field at the detector is known, it is typ-
ically possible to recover a high resolution image of the object field
through numerical back propagation with the inverse of Pz. However,
photon detectors only capture intensity signals and do not directly
measure the phase of the electric field, and the amplitude signal does
not contain sufficient information to calculate the field in the source
plan as the phase gradients encode the local propagation direction of
the light.

A intensity measurement does impose the following constraint on
valid solutions for the far-field electric field,

I(xd,yd) = |E(xd,yd)|
2. (26)

Extracting the full complex electric field from its intensity alone is
an ill-posed problem: Any field with the same amplitude pattern as
the true solution satisfies the measurement constraint of Eq. 26. This
chapter will discuss a number of ways to retrieve the phase and thus
solve this so-called ’phase problem’ for the purpose of imaging.

3.2 single shot phase retrieval methods

3.2.1 Holography

One way to measure the phase of a field is by recording the inter-
ference with a known reference wavefront. In this case, the phase-
difference of the field with respect to reference is encoded in the in-
tensity through their interference terms. This hologram can be read
out by using numerical or optical propagation to separate out the
signal from one of the interference terms from the other intensity

25
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terms. Techniques based on this idea are known as holography, a term
introduced by Gabor [50] when he pioneered the first method to re-
construct the field based on this principle in 1948. He recorded the
interference of a weakly scattering object and a unscattered spherical
reference wave on a photographic plate located in a Fresnel plane.
The intensity signal at the detector for any holographic interference
can be described by,

Iholo = |R+O|2 = |R|2 + |O|2 +OR∗ + RO∗, (27)

where R is the known reference wave, while O is the field scattered
by the object, both located at a detector plane at a distance z of the
specimen. After exposure, the photographic plate’s transmission func-
tion t(xd,yd) scales approximately linearly with the exposing inten-
sity signal. A recorded hologram can be read-out by illuminating the
photographic plate with an optical wave that resembles the reference
wave. The result is a field with an amplitude proportional with Iholo,
and a phase that is that of the reference. After propagation of this field
with a distance z, a twin image of the scattered field is generated, as-
sociated with the cross terms of Iholo: An in-focus image with a real
focus at a distance z, and an out of focus background image with
a virtual focus at a distance −z. The original method was limited
by poor signal-to-background ratios due to the defocused twin im-
age. However, holographic methods gained prominence since due to
a number of improvements during the course of the last century. Off-
axis holography [69], where a separate non-colinear reference is used
to record a hologram, enables spatial separation of the twin images,
greatly improving signal to background. Improvements in computing
power and information theory led to the adaptation of digital holo-
graphic methods [70, 71], where the hologram is recorded digitally on
a camera, and the propagation of a field with an amplitude scaling
with Iholo is done computationally instead of optically. Of special im-
portance to this work is Fourier holography, a special form of off-axis
digital holography, in which the reference wave is generated by the
illuminating beam itself diffracting on a pinhole in the plane of the
specimen and the intensity is measured in a Fourier plane. Then, the
interferometric intensity of Eq. 27 is Fourier transformed, which will
give rise to the following complex signal:

Î(x,y) = Ô~ R̂∗ + R̂~ Ô∗ + R̂∗ ~ R̂+ Ô∗ ~ Ô, (28)

where the hats indicate the Fourier transforms of the corresponding
detector plane fields and ~ denotes a convolution. As the diffraction
patterns in Fourier-holography are measured in a Fourier plane of
the specimen, these are equivalent to the object and reference waves
in the specimen plane. The autocorrelations of R and O in this expres-
sion are centered around zero, and will be spatially separated from
the cross-correlation terms, which are centered on plus or minus the
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real space separation between the object and the pinhole. These cross
terms produce a pair of mirrored twin images both convolved with
the pinhole wave. Compared to off-axis holography this method does
not require a carefully aligned and calibrated reference beam. How-
ever, unlike other holographic methods there is a trade-off between
resolution and signal strength that both scale with the size of the
pinhole.

3.2.2 Coherent Diffractive Imaging

As an alternative way to recover the phase, it is possible to make the
inverse problem well-posed by constraining the solution at multiple
diffraction planes (usually the object and detector planes). This can
be achieved either through an additional measurement or through ad-
ditional priors. The complex field can then be reconstructed through
iterative optimisation. The group of methods that employ this strat-
egy are known as Coherent diffractive imaging or CDI [5, 18]. This
type of approach was first introduced in the field of x-ray crystallog-
raphy by Hoppe and Gassman [72, 73]. However, due to the different
challenges for periodic crystal and non-periodic objects, it was not im-
mediately apparent that these methods could be applied for general
imaging, especially due to the difficulties in constraining the phase
problem sufficiently to obtain unique solutions. Not only do the crys-
tallographic algorithms use constraints that apply specifically to crys-
tals, but the periodic structures of crystals also generate very bright
Bragg orders and thus their diffraction signal has a very good signal-
to-noise ratio. However, the solution to the non-periodic diffractive
phase problem was already identified, in 1952 [74] by Sayre who re-
marked that in principle, based on Shannon’s sampling theory, the
crystallographic phase problem could in most cases be solved uniquely
if the intensity of the diffraction pattern halfway between Bragg peaks
could be determined. While these measurements are not possible for
crystallographic structures, they can be measured for confined imag-
ing objects. The first iterative imaging algorithm that would be ap-
plied to non-periodic objects was introduced in 1972 by Gerchberg
and Saxton. They developed an algorithm [75] that uses simultane-
ous intensity measurements at both an image plane and its far-field
diffraction plane and uses iterative optimisation algorithms to find
a solution that fits both data sets. However, these type of measure-
ments are often impractical for 2-dimensional imaging and, as Fienup
demonstrated in 1978 [20], it is often possible to reconstruct the field
from the Fourier-modulus of an object alone if constraints based on
prior knowledge of the finite support of the specimen plane are ap-
plied instead of measured image plane intensities. While he devel-
oped these methods for radio-astronomy, the inverse scattering prob-
lem for the far field diffraction patterns of isolated objects is identical.
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Work by Bruck and Sodin [76], Bates [77, 78] and others in the early
80s showed that the inverse problem for non-periodic, real-valued ob-
jects is almost unique, as long as the Fourier-space intensity pattern is
sampled at at-least twice the Nyquist-Shannon sampling rate (which
mirrors Sayre’s earlier observation). Bates argued that for such diffrac-
tion patterns the field at a sample point is the the sum of the fields
in the neighbouring sample points, which generates a phase solution
that is unique aside from reflection and translation symmetries, and
that for real-valued objects, this solution is always the most compact
object allowed by the measurement. This realisation explains the ef-
fectiveness of the finite object size priors introduced previously by
Fienup. While transmission functions are typically nearly pure phase
objects in hard x-ray and electron microscopy, the refractive index
can act as a real-valued object instead of the transmission function
for pure phase modulating specimen under a weak phase approxima-
tion [18]. These developments led to the first single-shot x-ray CDI
experiment in 1999 by Miao [79].

This approach, in which the object field is reconstructed with only
a single intensity measurement, will be referred to here as conven-
tional coherent diffractive imaging (cCDI) to distinguish them from pty-
chographic CDI (pCDI) methods. cCDI experiments work under a thin
sample assumption. This is the assumption that the scattering can
be described as a single two dimensional transmission or reflection
function acting on the illumination. This assumption only holds if
the specimen is thin enough for the following two requirements to
be satisfied: 1) Multiple scattering contributions need to be be neg-
ligible. 2) Propagation effects on the beam profile inside the sample
need to be negligible. The sample thickness for which this second
assumption holds depends on the degree of wavefront curvature. It
is common practice in these single-shot experiments to refer to the
sample-plane exit wave as the object, as the object transmission func-
tion is non-separable from the exit wave with single shot data sets.
We will follow this convention in the following section, but not in the
sections about pCDI.

3.2.3 Object priors in cCDI

The most commonly used object source of prior in cCDI experiments
is the assumption that the object transmission function is real and
only has non zero-values within some known area [20], within the
so-called finite object support,

oi+1(~rs) =

{
0 ~rs /∈ S
oi(~rs) ~rs ∈ S

, (29)

where ~rs = (x,y) is the distance from the sample origin to a different
point on the sample plane, oi is the i−th object update, and S(x,y)
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is the support. The shape and size of the support are often based on
low resolution images of the sample [20]. Alternatively, as long as the
object transmission is approximately binary and the exit wave can
be described as a real-valued object, the support itself can be itera-
tively refined based on a threshold value in the reconstruction, using
a method called shrink-wrap [80]. For measurements in the far-field
regime a first support can be extracted from the autocorrelation of
the sample plane field, which is obtained from the Fourier transform
of the intensity at the detector. As discussed in the previous section,
the solution for such real-valued finite size objects must be the most
compact object that is consistent with the measurement.

In crystallography [81], good support information is typically not
readily available due the repeating nature of the crystal lattice. In-
stead, in crystallography, it can often assumed that the scattering of
the object can be fully attributed to the sum of a known amount of
well-separated point particles, a property that is sometimes referred
to as atomicity [82]. For real-valued objects, such as for holes in plates
or other objects that induce a homogeneous phase delay, a positive
real valued object is usually enforced. This prior is called the posi-
tivity constraint [82]. This constraint uses the following update step,

oi+1(~rs) =
{

R{oi(~rs)} R{oi(~rs)} > 0

0 R{oi(~rs)} < 0.
(30)

This constraint is often applied in combination with a support or
atomicity constraint [82], which can increase the rate of convergence
of the reconstruction, as the space of approximate solutions is greatly
reduced. For the experimental results described in Ch. 6, an update
step was implemented that constrains the solution for the object in a
similar way, through replacing the object by its absolute value,

oi+1(~rs) = β|oi(~rs)|+ (1−β)oi(~rs), (31)

Where β is a relaxation parameter, with a value close to one, that
slightly eases the constraint. So that small phase curvatures are still
allowed. The differences between these methods are subtle, in both
cases a positive real valued object is the only real solution. Eq. 30 is
a distance-minimising projection on the set of positive real numbers,
while Eq. 31 is not distance minimising. However, unlike Eq. 30, this
constraint conserves the size of the transmission function.

3.2.4 cCDI Algorithms

The goal in iterative cCDI reconstructions is to find a (hopefully unique)
solution for the complex field that satisfies both these object priors
and the measurement constraint of Eq. 26. A straightforward method
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to do this, called the error reduction algorithm [20], applies alternat-
ing projections on the constraint sets in object space and detector
space. This general approach is illustrated in Fig. 6.

1)

2)

3)

4)

Figure 6: Schematic depiction of the error reduction algorithm.
1) A guess for the detector field with incorrect phases is propa-
gated to the object plane numerically through a fast Fourier trans-
formation (FFT).
2) The object support, based on prior specimen knowledge, is en-
forced by setting all pixel values outside the support region to
zero.
3) The updated object field is propagated back to the detector to
obtain a new guess for the detector plane field with incorrect am-
plitudes.
4) Finally, the amplitudes measured by the detector replace the
amplitudes in this guess, completing a single iteration of the algo-
rithm.

After starting with an initial guess for the electric field in detector
plane with a random phase distribution, the field can be propagated
to the sample plane by means of a fast Fourier transform (FFT), as-
suming the camera is located in the far-field (see Eq. 18). This will
generate a first guess for the object transmission function. Next, the
object-space constraints are applied, and the field is propagated back
to the diffraction plane through inverse FFT. Subsequently, the field
guess is projected on the measurement constraint set by replacing the
far-field amplitudes with the measurement amplitudes, while keep-
ing the phases from the object update

Ei(xd,yd) =
F [oi(x,y)]
|F [oi(x,y)]|

·
√
I(xd,yd). (32)



3.3 ptychography 31

Here Ei(xd,yd) is the i-th update of the electric field and F denotes
a Fourier transform. Originally interpreted as a method of projec-
tions on constraint sets, it was shown by Fienup [19] that the error-
reduction algorithm can also be interpreted as a gradient-descent
method. While in many cases this error-reduction algorithm can re-
cover a good image of the object, it is known to be sensitive to stag-
nation in local minima, instead of converging to to a global opti-
mum [19]. In 1982 [33], Fienup proposed an adjusted approach to
find a solution. In this approach, the problem is described as a sys-
tem where the input gi generates an output g ′i by applying the de-
tector constraint in Fourier space to the input, followed by a Fourier
transformation of the resulting camera-space field to object space. As
the object space output satisfies the measurement constraint by def-
inition, an output that satisfies the object-space constraints is a so-
lution to the phase retrieval problem. The difference with respect to
the error reduction method is that the input is no longer required to
satisfy the object constraint itself, which provides additional freedom
for the algorithm to find a solution. Fienup proposed three so-called
input-output algorithms, the most successful of which is the hybrid-
input-output (HIO) algorithm and the update step for this algorithm
his given by

gi+1(~rs) =

{
g ′i(~rs) ~rs ∈ C
gi(~rs) −βg

′
i(~rs) ~rs /∈ C

, (33)

where C is the set of points in which output g ′(~rs) already satisfies
the object constraints and β is a feedback parameter with value that is
smaller than one. In the places that the output satisfy the object space
support the solution is not adjusted, while in those points where the
output does not satisfies the constraints the input is driven to de-
crease until the output goes to zero.

3.3 ptychography

3.3.1 Solving the phase problem through transverse scanning

While the cCDI approach often works well for isolated real-valued
objects or for objects with known periodicity, it requires significant
prior knowledge about the specimen to reconstruct objects that do not
fulfil these criteria. For many applications this kind of information
might not be available. In recent decades, ptychographic CDI (pCDI),
has emerged as a successful alternative [83] that overcomes these lim-
itations. Ptychography is used to denote a group of methods to solve
the phase problem, in which (paraphrased from [84]):

1. There is an optical component that can be shifted laterally rela-
tively to the illumination.
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2. A detector located in another plane records the interference pat-
tern for at least two relative positions.

3. There must be sufficient overlap between the illuminated areas
at different recorded positions.

4. The illumination source is sufficiently coherent to be modelled
accurately as coherent or as an incoherent sum of a limited
amount of coherent modes.

5. An object transmission or reflection function is recovered nu-
merically from these measurements.

It turns out that a unique solution for the phase problem exists, if
instead of the inverse problem for a single diffraction pattern the in-
verse problem for a set of diffraction patterns is considered in which
the sample laterally scanned through a localised beam with overlap-
ping illuminated areas. This further constraints the single diffraction
pattern problem, as solutions for the illuminated part of the object at
one scan location must comply with data generated at neighbouring
scan positions.

For example, a specimen and a specimen in a mirrored orientation
would result in identical diffraction intensities at the detector. How-
ever, if another diffraction pattern is recorded, while the specimen is
shifted with some fraction of the beam, then the incorrect mirrored
solution for the first measurement is not consistent with either the
solution for the second measurement or the mirrored image of the
solution for the measurement, unless the object is periodic with the
periodicity of the scan grid steps. The idea that the phase problem in
far field diffraction measurements can be solved through transverse
scanning of the illumination function is based on the pioneering the-
ory work of Hoppe [85], who showed that for periodic structures the
ptychographic phase problem has a unique solution, while later it
was shown to also hold for non-periodic structures [83].

In ptychography, like in cCDI, the exit wave of a single measure-
ment is usually described as as the multiplication of the probe and a
thin sample. For each measurement the object is shifted with respect
to the illumination which leads to the following forward model

ψj(r) =P(r)O(r−Rj), (34)

I(xd,yd)j =
∣∣Pzψj(x,y)

∣∣2, (35)

where R indicates the real-space displacement and the subscript j
indicate the values of a variable at the j-th scan position. The ptycho-
graphic configuration is schematically shown in Fig. 7. Here the red
circles indicate the areas illuminated by the illumination for a single
scan position.
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x
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Figure 7: Ptychographic measurement scheme in transmission. A thin spec-
imen is illuminated by a confined probe and the resulting diffrac-
tion pattern is recorded at a detector, then the specimen is laterally
translated by a fraction of the size of the probe, illuminating a par-
tially overlapping area. The red circles indicate an area that is illu-
minated by the probe at a single position of the sample, adopted
from my co-worker M. Du [86].

3.3.2 Wigner-distribution deconvolution method

In the 90’s, the first practical implementation using the information
of ptychograpic data sets was developed by Rodenberg and Bates, to
reconstruct crystallographic structures [87, 88]. This method, the so-
called Wigner-distribution deconvolution method (WDDM), is different
from later ptychographic CDI methods and finds an analytical solu-
tion to phase problem by applying a Fourier transform on the mea-
sured intensities over both the detector coordinates and the probe
positions in order to fully separate the contributions of the exit wave
of the probe and object functions in the resulting integral [89]. How-
ever, the contributions of the probe and the object are only separable
up to the highest spatial frequency present in the scan grid raster, and
therefore the acquisition of very large data sets is required to achieve
a combination of a high resolution and field of view. In fact, when
the method was introduced, the long measurement times and high
memory requirements limited this technique to images of 32x32 pix-
els [89]. Recently, however, there has been renewed interest for these
direct ptychography methods due to technological advances in fast
pixel detectors and computational memory [90].

3.3.3 Ptychographic CDI

In principle, the phase problem from a ptychographic data set has
a unique solution for data sets with less dense sampling of rela-
tive probe-specimen positions than the sampling that is required for
WDDM. In fact, in the case of a known periodic sample, it can be
shown that only three diffraction patterns are sufficient to obtain a
unique solution for the phase problem (see Ch. 2 of [83]). To avoid
the amount of data required for WDDM, Rodenburg developed an al-
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ternative approach to reconstruct specimen from ptychographic data
in 2004: the Ptychographic iterative engine (PIE) [21]. The family of
PIE algorithms combines the iterative optimisation techniques used in
CDI with ptychographic data sets that are undersampled for spatial
Fourier-transform . This approach avoids both the space-bandwidth
limitations of WDDM as well as the necessity of strict specimen pri-
ors that are required for cCDI. While the algorithm initially pro-
posed assumes a known wavefront, a significant improvement was
achieved by solving for the complex probe and object wavefront sep-
arately through the extended ptychographic iterative engine (ePIE)
algorithm [91]. By separating the illumination from the specimen, pty-
chography CDI is simultaneously an imaging and a high-resolution
wavefront sensing technique. Furthermore, the separation of object
and probe functions prevents degradation of the object image quality
by aberrations in the illumination wavefront. In fact, several experi-
mental studies have indicated that aberrations present in the wave-
front tend to improve image quality and reconstruction robustness
in ptychographic reconstructions [92, 93]. An important feature of
PIE-inspired algorithms is the feasibility of solving for extra variables
that are separate from the 2D specimen and functions. This is possi-
ble due to the highly over-constrained nature of ptychographic data
sets. For example, several studies have shown that its possible to cali-
brate the axial position [25], to correct the lateral probe positions [94],
or to model the object as a stack of 2D object slices [24] and solve
for all of those. A special lens-based form of ptychography that has
gathered attention in the recent decade, especially for visible light ex-
periments, is Fourier ptychography [31, 95]. In Fourier-ptychography,
a small-NA lens is used to obtain low-resolution, high field-of-view
(FoV) image-plane intensities on the detector. By changing the angle
from which the specimen is illuminated, the part of spatial-frequency
space of the specimen that is captured by the lens aperture shifts
laterally (see Eq. 9), and reconstruction algorithms identical to con-
ventional ptychography can subsequently be used to reconstruct the
field (where the shifting part of spatial frequency space field captured
by the lens fills the role of the shifting object in diffraction-based pty-
chography, while the imaging lens and pupil combination fills the
role of the probe).

3.3.4 PIE-type algorithms

In this section a description of the basic steps of several ptychographic
algorithms used in Ch. 7 are described and the derivation of the ePIE
update rules is given. Fig. 8 gives a basic flow chart for the steps
of PIE and the algorithms discussed below. First we will start with
describing the algorithmic steps of the ePIE algorithm. At each itera-
tion of the ePIE algorithm [22], the following steps are applied once,
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oj(x)'

Oi(x) Pi(x)
Select object patch of 
j-th scan position 

oj(x)

ψi,j(x)

Multiply object and probe functions to form 
exit-wave  

Propagate exit wave to 
detector
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amplitude √Im,j(x,y)

Ei,j(xd,yd)'

j-th Intensity measurement
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ψi,j(x)'
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patch
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Figure 8: Flow chart of PIE algorithms, showing the different update steps
for different extensions to the original PIE algorithm used in this
thesis. The uncoloured boxes are the steps of the original PIE al-
gorithm and are shared with all other listed algorithms, while the
update step in red is the probe refinement step introduced by ePIE
[22] and is shared with all algorithm except for the original PIE al-
gorihtm. Other possible extensions include axial distance calibra-
tion (zPIE [25], yellow), momentum acceleration to improve con-
vergence (mPIE,green) [91] and orthogonal mode decomposition
(blue) [27].
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sequentially, to each scan position. An object patch oj(r) that encom-
passes the area illuminated at the j-th scan location is selected from
the larger object O(r−Rj) and is multiplied with the current probe
guess Pi(x) to obtain a guess for the j-th exit wave (see Eq. 34). Next,
the forward model is used to propagate this exit wave guess to the
detector plane. Then, like in Eq. 32 the modulus is replaced by the
measured modulus

√
Ij. After back propagation, an updated guess

for the exit wave ψ ′(r) is obtained. Then, the object and probe are
updated with the following update rules.

o ′j(r) = oj(r) +α
P∗(r)

(
ψ ′j(r) −ψj(r)

)
|Pmax|

2
(36)

P ′(r) = P(r) +α
o ′∗j (r)

(
ψ ′j(r) −ψj(r)

)
|Omax|

2
, (37)

where α is a stepsize, that is chosen between 0 and 1 and is often
chosen to be unity. Next, the object patch update o ′j replaces the cor-
responding area in the larger object array Oi and the full sequence
described above is repeated once over all scan location j for each iter-
ation i of the algorithm, which itself is repeated untill the algorithm
has converged.

The ePIE object and probe updates of Eqs. 36 and 37 can be under-
stood in several ways [91]. While the original article, like CDI previ-
ously, was described in terms of projections on constraint sets, here
we will follow the formalism from the supplementary by a paper of
Thibault and Menzel [26]. In this description the object update rule is
derived by minimising the difference between the exit wave updated
by the data ψ ′(r) and the exit wave predicted by the model (Eq. 34),
through the cost function

L =
∑
r

∣∣P(r)o ′j(r) −ψ ′(r)∣∣2 +∑
r

µ(r)
∣∣o ′j(r) − oj(r)∣∣2, (38)

where the primes denote variable updates. The second term in this
equation is a regularisation term (a secondary constraint on a solu-
tion to avoid over-fitting) that penalises rapid changes in the object
updates with a chosen regularisation weight µ(r) and is allowed to
vary spatially. A natural choice could be to resist rapid changes of the
object at locations that were only weakly illuminated in the measure-
ment responsible for the current object update. For example, this can
be accomplished with the weight function: µ(r) = |Pmax|

2 − |P(r)|2.
This weight function penalises rapid changes of the object that are
based on data with a relatively small signal-to-noise ratio, at the cost
of potentially slower convergence. This choice for the regularisation
weights will result in an update rule that is identical to the ePIE ob-
ject update rule, apart from a chosen stepsize constant. The minimum
of the cost function must satisfy its Euler-Lagrange (EL) equations.
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As the traditional derivative is undefined for many complex func-
tions (see App. A for a short explanation or the review by Kreutz
and Delgado [96] for a more rigorous explanation), we will make use
of complex-real (or Wirtinger [97]) derivatives to do the derivation
for the EL equations. For these derivatives, we follow the definition
suggested by [96]. In this definition (see App. A), the derivative of a
function to its complex conjugate function is zero ∂f/∂f∗ = 0.

∂L

∂(o∗j )
= P∗(r)

(
P(r)o ′j(r) −ψ

′
j(r)

)
+µ(r)

(
o ′j(r) − oj(r)

)
= 0. (39)

This equation can be solved for the object patch update o ′j,

o ′j(r) = oj(r) +
P∗(r)

(
ψ ′j(r) − P(r)oj(r)

)
|P(r)|2 + µ(r)

. (40)

The probe update can be found with a identical approach. This results
in the following regularisation weight functions for object and probe,

µobject(r) = |Pmax|
2 − |P(r)|2 (41)

µprobe(r) = |Omax|
2 −

∣∣oj(r)∣∣2. (42)

It is then possible to derive the following ePIE update rules [91]:

o ′j(r) = oj(r) +α
P∗(r)

(
ψ ′j(r) −ψj(r)

)
|Pmax|

2
(43)

P ′(r) = P(r) +α
o ′∗j (r)

(
ψ ′j(r) −ψj(r)

)
|Omax|

2
. (44)

For some of the results of Ch. 7, the combination of the angular
correction algorithm aPIE presented in the paper with the zPIE algo-
rithm is investigated [25]. zPIE is an extension to the PIE algorithm
that can calibrate the axial propagation distance. This distance is one
of the experimental parameters incorporated in the forward model
for ePIE. If the solution for the detector-space field is back-propagated
from the detector plane to a plane at at an axial distance that is close
to, but not quite at the sample plane, then the apparent probe size will
be different from the real probe size. This will cause the algorithm to
misestimate the size of the scan grid and misevaluate the location
in the greater object that should be updated by an object patch so
that the candidate solution in a region will approximate a coherent
sum of non uniformly shifted object updates. zPIE makes use of this
property, by propagating an ePIE candidate solution to several axial
planes close to the current best estimate for the axial distance. Then,
it optimises a sharpness metric to find a better guess for the axial
distance to specimen plane. Note that this can only calibrate the axial
distance if the features in the object or probe vary significantly over a
distance that is smaller than the apparent shifts of the scan grid.
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3.3.5 Convergence acceleration through momentum acceleration in pty-
chography

While the diversity of the information in ptychographic data sets can
typically overcome the non-uniqueness of the field solutions that is
present in the single-diffraction-pattern inverse scattering problem,
stochastic gradient descent (SGD) algorithms like ePIE (in which lo-
cal gradient updates are calculated at sub-data sets) are known to be
vulnerable to stagnation near saddle points and local minima. For ex-
ample, convergence can be slow if there are approximate solutions
that are consistent with the forward model for all but a small frac-
tion of sub-data sets. Increasing the stepsize typically increases the
convergence rate, but can also induce instability or even divergence,
as the optimal stepsize might not be identical for each sub-dataset.
To accelerate the convergence behavior of ptychographic reconstruc-
tions, a momentum-accelerated PIE algorithm (mPIE) was introduced
in 2017 [91]. While this algorithm was not used in the results of Ch. 7,
the inclusion of momentum acceleration in our angle-reconstruction
method was influenced by this method, so we will briefly discuss the
properties and advantages of momentum acceleration in optimisa-
tion problems that are not strongly convex. Momentum acceleration
techniques [98] are inspired by the physical idea of momentum and
are a commonly used method to accelerate convergence for gradient
descent methods for non-convex problems in machine learning [99].
In momentum-accelerated methods, instead of stepping towards the
negative gradient at each step, some velocity vi builds towards the di-
rection of the negative slope and the algorithm steps with the built-up
velocity at each step. For convex optimisation problems it has been
shown that Nesterov’s accelerated gradient method [100], a form of
momentum acceleration which served as the basis for mPIE, is guar-
anteed to be faster than normal gradient descent. Momentum meth-
ods have also shown to have superior initial convergence behavior
for non-convex optimisation methods, while showing slower conver-
gence when noise becomes the dominant form of error. While the
exact reason to why these methods are superior for non-convex op-
timisation is still an active field of research [101]. However, some of
the benefits of momentum acceleration can be intuitively understood.
First, consider a cost-function that has a smooth optimisation land-
scape containing a saddle-point, such as the one illustrated in Fig. 9

a). In the direction of the inflection point of a) the algorithm can stag-
nate if the stepsize is too small. While a larger stepsize might enable
the candidate solution to step past the inflection point, large stepsizes
might make a reconstruction unstable and the optimal stepsize might
not be the same in all directions. When the solution is slowly acceler-
ated down the optimisation curve, complete stagnation at inflection
points is impossible, even when one starts with a relatively small step-
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size. By contrast, near a local or global minimum, the acceleration will
average out to zero over many iterations. While second-order gradi-
ent methods, such as Newton’s method, also take the curvature of
the optimisation landscape into account and can potentially find a
more accurate update rule, they are also computationally much more
expensive to calculate than momentum methods, so that the compu-
tational cost per step is much higher. A second situation worth con-
sidering to explain the effectiveness of momentum acceleration on
non-convex problems is a landscape that is approximately convex on
a large scale, but locally rough, such as the one illustrated in Fig. 9 b).
In such a landscape, momentum acceleration will enable the update
to overcome areas where the roughness of the optimisation landscape
gradient makes any local gradient a poor estimate of the direction to
the global minimum, while the convexity on a larger scale makes
the step-averaged gradient a better estimate for the right direction to-
wards the minimum, at the cost of a higher likeliness to overshoot the
global minimum. Finally, stochastic gradients only approximate the
global gradient based on the sum of the gradient steps of separate
batches containing only a subset of the data. As the optimal update
direction is only inferred from a subset from the data it is bound to
be sub-optimal, and the averaged gradient over multiple sub-datasets
gives a better estimate on the proper downward direction of the slope,
as compared to the gradient of any individual sub-dataset.

a) b)

Figure 9: Illustration of example of potential optimisation landscapes that
might benefit from momentum acceleration. a) shows part of a
saddle point-like optimisation landscape. b) shows an almost con-
vex optimisation landscape that is locally rough.
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3.4 spectrally resolved imaging through fourier-transform

spectroscopy

Conventional CDI methods have stringent temporal coherence re-
quirements on the illumination source, which is discussed in more de-
tail in Sec. 3.5.2. Typically this has the consequence that intrinsically
broadband sources such as those provided by HHG or synchrotrons
require a high degree of spectral filtering. In the work described in
Ch. 5 and Ch. 6, spectrally resolved diffraction signals are obtained
from a pair of phase-locked broadband harmonic sources. Through
separation of the signal in different spectral components, the spec-
tral coherence requirements are met without the requirement of spec-
tral filtering, as long as the spectral sampling density is sufficient. In
this method, the time delay of these phase-locked HHG sources is
scanned, while recording intensities on the camera. Then, a temporal
Fourier transformation is used to separate different spectral compo-
nents, as described in more detail in Sec. 4.3. Here we will discuss the
two reconstruction methods that were used to generate images from
these signals from this signal: Diffractive shear interferometry (DSI)
and an adjusted form of Fourier holography (FTS-FH). These meth-
ods bear a strong conceptual resemblance to a hyper-spectral imaging
approach from astronomy called double Fourier-interferometry [60,
102], in which Fourier-transform spectroscopy (FTS) is applied on the
signal from different radio or infrared baseline telescopes, which re-
sults in a signal that is similar to the one we obtain in our experi-
ments.

Consider two illumination beams, which are propagating from two
high-harmonic sources S1 and S2, that scatter from a specimen to-
wards a detector in the far field. This situation is illustrated in Fig. 10 a).
As both sources are in the far-field of the specimen, it can be assumed
that at the sample plane, the difference in phase curvature between
these beams is negligible over the size of the specimen. Furthermore,
it will be assumed that the amplitude profile at the specimen of the
beams only differ by a constant factor c. The assumption that the
phase relationship between the two beams is linear at the far-field
conditions of our experiments is supported by by the observation
that the unscattered beams produce straight line fringes when they
interfere at the detector. Under these assumptions the 2D probe func-
tions of one beam P2 at the sample can be written as a function of
the probe function of the other beam P1, which leads to the following
expression,

P2(ρ,ω) = cP1(ρ,ω)ei(∆kρ(ω)·ρ−ωτ), (45)

where τ is the time delay between the pulses, ω is the optical fre-
quency of the field, ∆kρ(ω) is the difference of the k-vectors of the
two beams.
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Δk
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dt
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o(ρ)

ψ(ρ) E(k)=ψ(k)
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fields
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Figure 10: Geometry of DSI experiments with high harmonic illumination.
a) A pair of infrared sources is focused into a gas jet and gener-
ate harmonics at source points S1 and S2. Two harmonic beams
diverge from these source points and propagate to the object (o)
located in the 2D object plane with coordinates ρ. After the beams
scatter from the object, the exit wave (ψ) propagates to a detector
in the far field, where the field E(k) is expressed in spatial fre-
quencies k.
b) 3D illustration of sheared diffraction patterns at the detector,
the difference in the incidence angles of the two beams causes a
lateral shear ∆k between their Fourier-components at the detector
in the far-field.



42 lensless imaging

Finally, as in most forms of CDI (Eq. 34), a thin sample assumption
will be used, so that the exit wave can be described by the multipli-
cation of the sum of the 2D probe function and a 2D object function
o(ρ).

This enables us to express the total two pulse exit wave as follows,

ψ(ρ, τ) = ψ1(ρ, τ) +ψ2(ρ, τ) (46)

= P1(ρ, τ)o(ρ)
[
1+ cei(∆kρ·ρ−ωτ)

]
. (47)

When this exit wave is propagated to a far-field detector plane by
Fourier transformation (by using Fourier-shift theorem), we obtain
the following detector-space intensities,

Iτ(k) =|ψ(k, τ)|2 (48)

=|E1(k)|
2 +

∣∣c2∣∣|E1(k+∆kρ)|2+
cE1(k)

∗E1(k+∆kρ)e
−iωτ + cc, (49)

where k are the spatial frequencies of the specimen and the far-
field electric field of a single beam E1(k) is the Fourier transform of
ψ1(k, τ). In what follows, we will use the electric field as a shorthand
for the detector space (=Fourier space) electric field of a single beam
E1(k), unless specifically stated otherwise.

So far we have only considered the detector intensities for a monochro-
matic source pair. However, for multiple wavelengths the total inten-
sity signal is the incoherent sum of the intensity signals of all har-
monics (see Sec 3.5.2). In DSI measurements, these intensities are
recorded while scanning the time delay between the two sources.
Then, by means of a temporal Fourier transformation, the measured
intensity is expanded into time-delay frequency components. Apart
from the time-delay-independent D.C. terms, which contains an inco-
herent sum over all wavelengths, this separates the signal in separate
spectral components and results in the following complex signal for
a harmonic with optical frequency ω:

Mω(k) = E(k)∗E(k+∆kρ). (50)

We use this quantity as a Fourier-space measurement constraint in
our reconstructions.

Note that the challenges to finding a solution to this inverse prob-
lem are different from cCDI, in which the field is reconstructed from
its absolute value

∣∣ψ̂1(k)∣∣. Unlike in cCDI, the far-field amplitudes of
the field can not be uniquely determined from the measurement sig-
nal alone as the signal from Eq. 50 only contains information about
the ratios between amplitudes of the field at different spatial frequen-
cies. It was shown by one of our collaborators from the technical uni-
versity of Delft [103] that for any measurement with a single shear
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and no priors, the solution is non-unique, when a solution is multi-
plied with a function that is periodic with two times the shear an-
other solution is generated. However, while some information about
the far-field amplitudes is lost, phase information obtained through
the interferometry is present in the signal of Eq. 50, via:

φM =
Mω(k)

|Mω(k)|
= ei[φ(k)−φ(k+∆kρ)]. (51)

Here, φ(k) is the phase function of the electric field. While the phase
function that satisfies Eq.51 is not unique, it does put a constraint
on the possible solutions of the phase function of the field: For any
solution to the measurement constraint, the integral of the phase gra-
dient of the solution over the shear must match the phase difference
measured at that shear:∫k+∆k

k

∇φ(k′)dk′ = φ(k) −φ(k+∆k) = φM(k). (52)

This puts an additional constraint on candidate solutions. For ex-
ample the phase conjugate of a solution is not typically a solution of
the measurement constraint in DSI. By contrast, in single-shot CDI the
phase-conjugated field is always a solution of the measurement con-
straint, and while this solution is only different in a trivial way (a mir-
rored object in object space) and the choice of the sign of the phase in
DSI is arbitrary, reconstructions will often stagnate in between these
two solutions in CDI, while they tend to prefer one orientation in
DSI. Note that measurements that only use a single shear vector are
insensitive to phase gradients perpendicular to the shear vector k.

3.4.1 Diffractive shear Interferometry

Based on this measurement signal M we developed a CDI-like itera-
tive optimisation scheme described in Ch. 5. Dividing the conjugate of
the measurement M∗ by a possible solution E(k) results in a laterally
shifted and conjugated version of a solution for the exit wave. Simi-
larly, the ratio M/E∗ will lead to a new guess for the sheared version
of E. To avoid overshooting issues, a symmetrised and regularised
update function is implemented that uses the following update step
in Fourier space:

En+1(k) = (1−β)En(k) +
β

2

[
M(k− ∆k

2 )En(k−∆k)

|En(k−∆k)|2 +α2
+

M∗(k+ ∆k
2 )En(k+∆k)

|En(k+∆k)|2 +α2

]
. (53)

Where En(k) is the n-th guess for ψ̂(k), β is a parameter between 0

and 1 that mixes in the input estimate with the update. Note that in
the article dk denotes the half shear, while ∆k denotes the full shear
here. More details are given in Ch. 5
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3.4.2 FTS-Fourier Holography

In the FTS-FH experiments, a pinhole in the specimen plane produces
a reference beam (R) for the object of interest (O). The field of source
S1 at the detector is given by the Fourier transformation of its exit
wave,

ψ̂1(k) =
[
Ô(k) + R̂(k)

]
. (54)

Where O and R are the exit waves of the pinholes and the specimen
respectively. This relationship can be combined with Eq. 50 to obtain
the following expression for the DSI signal,

Mω(k) = Ô(k)Ô∗(k+∆k) + R̂(k)R̂∗(k+∆k)+

Ô(k)R̂∗(k+∆k) + R̂(k)Ô∗(k+∆k). (55)

And, after 2D spatial Fourier transformation of the signal:

M̂ω(ρ) = O(ρ)~O∗(ρ)ei∆kρ·ρ + R(ρ)~ R∗(ρ)ei∆kρ·ρ+

Ô(ρ)~ R̂∗(ρ)ei∆kρ·ρ + R̂(ρ)~ Ô∗(ρ)ei∆kρ·ρ. (56)

Aside from a convolution with a linear phase ramp for each of the
terms, this expression is identical to the object space autocorrelation
signal one would obtain in a ordinary FTH experiment. The effect
of this convolution on the cross correlation terms, which are used to
obtain an image in FTH imaging, can be reasonably approximated
with a multiplication with a linear phase-ramp or even a constant
phase offset as long as the spatial extent of the reference pinhole is
limited.

3.5 coherence and sampling requirements in diffrac-
tive imaging

In this section the requirements on coherence and sampling in diffrac-
tive imaging experiments will be briefly described.

3.5.1 Sampling Requirements

The argument, which was made by Bates [78], that solutions for the
phase problem for imaging of objects with a finite support are essen-
tially unique aside from trivial object flips or displacement depends
on a Nyquist sampling rate of the spatial frequencies present in the
detector intensity signal. Consider the situation of Fig. 11, in which
a incident plane wave scatters from an object of width W, to a de-
tector at a far-field plane at a distance Z to detector pixels that are
spaced with a detector pixel size ∆x. The fastest fringes on the detec-
tor are due to the interference between the waves that scatter from
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the object with the largest difference in scattering angle, from waves
that are scattering from the edges of the object. The difference in an-
gle α between such waves (assuming a paraxial approximation) is
equal to W/Z [104]. Which will lead to interference fringes with a
period of λ/α = λZ/W. The Nyquist requirement of at least two sam-
ple points per period results in a maximum detector pixel spacing
∆x < 2λ/α = λZ/W.

x

xZ

W

α

a) b)

c)

Figure 11: Illustration of sampling requirements in CDI. a) A diffraction pat-
tern is sampled with a sampling density ∆x, determined by the
pixel size. In order to properly reconstruct the fields, it is required
that this density at least matches the Nyquist frequency of the spa-
tial fringes. So that the fastest fringes, generated by those points
of the transmitting part of the object that are maximally separated
(by width W), are sampled at least twice per period. The green
sine function on the top right of the subfigure illustrates a well
sampled signal, while the red sine illustrates a insufficiently sam-
pled signal, b) and c) illustrate a undersampled and a sufficiently
sampled diffraction pattern, respectively.

In pCDI, the sampling-density requirements for the individual diffrac-
tion patterns are not as strict as in the cCDI case. For ptychographic
data sets, it has been shown that each scan position probes a differ-
ent set of Nyquist sampling points, so that the combined data set can
be Nyquist sampled even if individual diffraction patterns are signifi-
cantly under-sampled, as long as the product of the object-space and
Fourier-space sampling points satisfy Nyquist sampling [105].

In support-constraint based DSI (see Ch. 5), the measured signal
can be described as ψ̂(k)ψ̂(k+dk)∗. As with intensity-based signals
in CDI, the fastest oscillations in ψ̂(k) will result in a signal that oscil-
lates with twice the frequency of the field, so that the signal requires
identical sampling conditions to the cCDI case for proper sampling.
However, for rotational DSI, different rotational orientations sample
different combinations of spatial frequencies, so that it can be argued
that the minimum sampling requirements for each individual diffrac-
tion pattern are reduced similarly to the reduction of the sampling
requirement in ptychography.
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3.5.2 Coherence requirements

So far, in the sections about cCDI and pCDI, we have assumed that
the detector intensity can be uniquely described as the propagation
of a single instantaneous 2D monochromatic field at the object. How-
ever, the measured intensity signal is a time-averaged quantity and it
is not guaranteed that the detector signal can be uniquely described
with only a single non-averaged field distribution. This is only pos-
sible if the spatial oscillations of the instantaneous field are uniform,
which depends on the temporal and spatial coherence properties of the
illumination source. For temporally incoherent sources, such as ran-
dom emitters and broadband sources, the time-integrated intensities
do not have a linear relationship with the instantaneous intensities as
the interference cross-terms between different spectral components
average out on timescales longer than the coherence time τ = λ2

c∆λ .
Instead, for such sources, the intensities can only be described with
partial coherence theory, either through coherence functions [106] or
as the time-averaged incoherent sum of monochromatic modes [107].
Sometimes, for the highly diverse data sets from pCDI, it is possible
to reconstruct separate fields at different wavelengths using diffrac-
tion theory by modelling it as a mutually incoherent sum of coherent
spectral modes [28, 29]. However, this leads to a dramatic increase the
number of model parameters that need to be solved, and therefore
typically requires strong priors about the sample and/or the illumi-
nation and a high sampling density in real space. The work in Ch. 5

and 6 explores an alternative solution that uses Fourier-transform
spectroscopy to digitally separate the different spectral components
before reconstruction. Even for mostly temporally coherent sources
it is useful to consider up to what threshold objects can still be re-
constructed with cCDI without appreciable reduction in obtainable
resolution. One factor to consider for such sources is the wavelength
dependence in the propagation direction of angular spectrum compo-
nents (see Eq. 9). When the spectrum of the illumination of a sample
shifts from monochromatic at frequency ν to a frequency band ±∆ν,
the range of spatial frequencies of the object field scattering at a spe-
cific angle spreads from k = ν/c to k±∆k, where ∆k = (∆ν)/c. For
insufficiently coherent illumination sources, the spatial fringes of the
object are no longer distinguishable, so that it is no longer possible
to reconstruct these fringes through standard cCDI methods. How-
ever, as long as the longitudinal coherence length Lc = c/(2π∆ν) of
the illumination exceeds the maximum path length difference of rays
scattering from the object to the detector, this blurring effect is small
enough for the interference maxima of the fastest spatial frequencies
to remain distinguishable. For a source field that can be described as
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a plane wave, this results in the following minimum requirement for
temporal coherence in cCDI:

c

π∆ν
> λW/L ∗ xmax (57)

A second factor to consider are spatial coherence requirements. For
spatially incoherent (=spatially extended) sources, the inverse prob-
lem can become non unique if the spread in incidence angles towards
the sample can no longer be distinguished from differences in the
scattering angles from the sample normal. Spence [18] has argued
that for CDI, the scattering angles from the sample can be uniquely
identified from the diffraction pattern in cCDI, as long as the illumi-
nation beam stays in phase over twice the area of the object to satisfy
the two-times oversampling requirement, or that the coherence width
Xc ≈ λ/θc > 2W, where θc is the spread of angles in the illumination.





4
E X T R E M E U LT R AV I O L E T L A S E R S Y S T E M A N D
I M A G I N G S E T U P S

This chapter contains a more detailed description of the laser sys-
tem used for the diffractive shear interferometry (DSI) experiments
described in Chapter 5 and Chapter 6. These experiments were per-
formed using extreme-ultraviolet pulse pairs generated through up-
conversion of infrared photons through high-harmonic generation
(HHG).

In order to enable the high peak powers required for this highly
non-linear process, femtosecond near-infrared pulses generated by a
Titanium-sapphire oscillator (Ti:Sa) are amplified from a few nJ to sev-
eral mJ through non-collinear optical parametric chirped-pulse ampli-
fication (NOPCPA) [108]. In this non-linear process, energy is trans-
ferred from picosecond pump photons into photons with the proper-
ties of the seed. After compression, these fs pulses are split into pulse
pairs with a tunable time delay by a common-path interferometer.
Next, both these pulses are focused inside a gas jet to generate high
harmonics of the driving laser, which are finally used as illumination
for our imaging setup.

A schematic overview of the experimental setups described in this
chapter is shown in Fig. 12.

The laser and amplification system for these experiments will be
described in Sec. 4.2, the vacuum setup and high harmonic generation
setups are described in Sec. 4.3, and finally the imaging setups in Sec.
4.4.

Before discussing the experimental aspects, some of the physics
behind high-harmonic generation is discussed in Sec. 4.1. A semi-
classical picture is used to explain some of the basic physics. Then,
phase matching considerations, are discussed in Sec. 4.1.2.

4.1 the high-harmonic generation process

4.1.1 Three-step model

High-harmonic generation occurs in the strong-field regime, where
the magnitude of the optical electric field is significant compared to
the Coulomb potential between particles in the atom. In this regime,
the induced dipole moment of the electron can no longer be accu-
rately described as a pertubative series of the fundamental field, as
is common in traditional non-linear optics. Instead, these high har-
monics arise from the contribution to the radiating dipole emission

49



50 extreme ultraviolet laser system and imaging setups

Pulse + λ Selection 
+ Bounce Amplifier
(80 ps, 300 Hz, 1.4 
mJ)

Ti:Sa Oscillator
(λ=800 nm, 20 fs,
 154 MHz, 5.2 nJ) 

Nd:YVO4
(λ=1064 nm, 10 ps,
77 MHz, 78nJ)
 

Grating Stretcher
(80 ps, 1.8 nJ) Pockel's Cell +

Post-Amplifier + 
Doubling Crystal
(λ=532 nm, 90 mJ)

Non-Collinear Optical Parametric Amplifier 
+ Grating compressor
( λ=800 nm, 25 fs, 300 Hz, 10 mJ)

 

Common path Interferometer + 
Vacuum system +
High Harmonic Generation setup  

Imaging setups 

Section 4.2

Section 4.3

Section 4.4

a)

b)

c)

Figure 12: Schematic overview of the experimental setups described in this
chapter. a) Laser system, the numbers given in the parenthe-
ses show changes in key parameters at the output for different
stages. b) vacuum setup and generation of extreme-ultraviolet
pulse pairs. c) imaging setup.



4.1 the high-harmonic generation process 51

of those quantum paths in which the electron tunnels out of the
Coulomb potential to continuum states, interacts with the field, and
recombines with the atom. As only a part of the electron wavepacket
tunnels out, the electron is never actually fully ionised. Surprisingly,
despite the intrinsically quantum-mechanical nature of tunneling, a
quasi-classical model can still be used to provide an intuitive picture
on many aspects of their physical behaviour. This three-step model,
which was proposed in 1993 [109], is shown schematically in Fig. 13.
This model describes the process in the following parts: In the first

Figure 13: Three-step model of high harmonic generation. 1) The Coulomb
potential of the atom is altered due to the influence of high inten-
sity pulses, increasing the tunnel ionisation cross-section. After
ionisation, the electron accelerates away from the nucleus until
the electric field changes sign. 2) After being decelerated, the elec-
tron is accelerated back by the field of the laser, gaining kinetic
energy. 3) The electron re-collides with the nucleus, releasing all
kinetic and potential energy it gained through emission of a high
energy photon.

step, an electron is removed from the atom through tunnel ionisa-
tion at some time τstart. The cross-section of this tunnel-ionisation
step is calculated using results from tunnel ionisation models. Then,
in the second step, this electron is treated like a free particle that in-
teracts classically with field of the driving laser, while the attractive
force of the ion is neglected due to the strong-field conditions. In the
third step the particle collides and recombines with the atom, after
the field changes sign. Then photons are emitted with an energy that
is the sum of its ionisation energy and the kinetic energy gained in
the field. From the equations of motion, the energy of the emitted
photon can be derived:

Ephoton = Ip + 2Up[sin(ω0(τstart)) − sin(ω0(τR)]. (58)

Here Ephoton is the energy of the emitted photon, Ip is ionisation
potential of the atom, ω is the frequency of the optical field, and
Up =

(eE0)
2

4mω2
is the ponderomotive energy.

As the recombination cross-section is only significant at any time
the electron is close to its nucleus, it’s possible to find the following
expression (from Eq. 58) for a cutoff that sets an approximate limit on
the energy of the photons:

Ecutoff ≈ Ip + 3.17Up (59)
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This prediction for the energy cut-off differs from the result of a full
quantum-mechanical strong-field treatment, developed by Lewenstein
[110] in 1994, only by the slope of its dependency on the ionisation
potential.

4.1.2 Phase matching for HHG

Phase matching plays an important role for the efficiency of any pro-
cess that uses non-linear optics to generate new wavelengths. Only if
photons that are generated at different spots along the propagation
direction of the generating beam interfere constructively can these
processes be efficient. In non-linear crystals, such as those that are
used for frequency doubling, birefringence is often used to compen-
sate for the dispersion-induced mismatch in phase velocity between
generated photons and the incident wave. For HHG in gasses, due
to the lack of axial symmetry-breaking induced by the crystal struc-
ture, other processes have to be used to match the phase velocity, or
equivalently the wave vectors, of the generated HHG beam with the
fundamental beam. There are four main contributing factors to the
phase matching of harmonics in a noble gas.

The first two terms arise as a wave-vector mismatch between the
high harmonics and the fundamental beam due to dispersion in the
medium. A positive dispersion term from the neutral noble gas atoms
and a negative dispersion term from the plasma, as, inevitably, a sig-
nificant fraction of the atoms will be ionised. The total wave-vector
mismatch due to dispersion is given by (from [111]),

∆kdispersion = qP

(
[n(ω0) −n(ωq)][1− η] − η

0.1λ0τµ0e2

4πmekbT

)
, (60)

here q is the harmonic order, P is the pressure, n(ωq) is the refractive
index at frequency of the q-th harmonic, ω0 and λ0 are, respectively,
the frequency and wavelengths of the driving laser, η is the ionisation
fraction of the gas, T is the temperature of the free electrons, andme is
the electron mass. A third factor arises due to the phase accumulated
by the electron wavepacket over its trajectory, which is given by [111]:

∆kdipole = α∇I, (61)

where α is a value dependent on the quantum trajectory. In tight
focusing conditions, the geometric Gouy phase gives rise to a last
significant phase mismatch contribution, as a Gaussian beam near its
focal plane z = 0 acquires a π phase shift compared to a plane wave
as it moves across the focus from z = −∞ to z =∞. This Gouy phase
of a Gaussian beam beam is given by,

φGouy(z) = −arctan(z/zR), (62)
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where zR is the Rayleigh range of the beam. For the low divergence
XUV beam the Gouy phase shift is small enough to be neglected
over the axial extent of the medium. In order to maximise the high-
harmonic generation efficiency, the task is then to minimise the total
wave-vector mismatch ∆k, which is given by,

∆k = ∆kdispersion +
∆φGouy(z)

∆z
+∆kdipole. (63)

As the dispersion terms of Eq. 60 are linearly dependent on the pres-
sure, while the other two terms are pressure independent, tuning
the pressure enables experimental control of the relative strength of
the dispersion term with respect to the dipole and geometric terms.
Additionally, the phase-matching conditions can be tuned by chang-
ing the focal position: In the axial direction, the intensity gradient
changes from positive values before the focus to negative values after
the focus. By changing the position of the focus from one side of the
interaction region to the other, the sign of the intensity gradient in the
medium can be flipped, causing the dipole phase term to change sign,
or if the focus is placed near the middle of interaction region, it will
cause the dipole phase term acquired over the interaction region to
become negligible. Tuning the distance between the focal spot and the
interaction region controls the magnitude of Gouy wave-vector mis-
match, as the derivative of the Gouy phase decreases as the distance
between the interaction zone and the focal distance increases. Finally,
the intensity of the driving laser influences the phase-matching con-
ditions, as it changes the strength of the dipole and ion dispersion
terms with respect to the neutral atom dispersion. The intensity in
the interaction region can be experimentally tuned by changing the
focusing conditions in the medium or by changing the strength of
the driving laser. If the driving laser intensity gets too high, the ion-
isation fraction might exceed a critical threshold, for which it will
no longer be possible to achieve phase matching [45] between the
negative Gouy and plasma dispersions and the positive neutral atom
dispersion. With proper phase matching, the divergence of the gener-
ated harmonics is typically far below the divergence of fundamental
laser.

4.2 laser and amplification system

4.2.1 The Ti:Sa oscillator seed laser system

Passive mode locking in Titanium-doped Sapphire (Ti:Sa) crystals
was first demonstrated in 1991 [112]. Since this discovery, Ti:Sa has
been a ubiquitious gain material for generating ultrafast pulses as
these crystals combine good heat-conduction properties, and a high
damage threshold with a large gain bandwidth (230 nm FWHM) of
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the Ti3+ [113] ion. This large gain bandwidth, shown in Fig. 14 a), en-
ables typical pulse lengths ranging from 100 fs down to a minimum
of about 5 fs [114], depending primarily on dispersion control. Ti:Sa
crystals have a wide absorption peak around 490 nm [115], and are
traditionally pumped with argon lasers or frequency doubled green
light generated in Nd-doped lasing materials [113, 116]. Although
more compact, directly diode-pumped Ti:Sa lasers have also become
available in recent years [116, 117]. Mode locking is enabled through
the optical Kerr effect [118] in the crystal. This is a nonlinear effect
in which the beam induces an intensity-dependent change of the re-
fractive index of the medium that, with a typical intensity profile of
a Gaussian beam, will lead to self focusing [119]. If the continuous-
wave mode experiences losses due to aperture effects, the stronger
self-focusing effects of the higher intensity pulsed mode can make
mode-locked operation out-compete single-mode operation. To keep
the pulses short in the crystal, and thus maintain the lower losses for
the pulsed mode, the laser cavity dispersion is compensated through
the use of chirped mirrors [120, 121]. One of the end mirrors in the
crystal is held by a piezo-controlled mirror mount that is able to ad-
just the cavity size. As the repetition rate of the output is determined
by the travel time of the pulse for a single round-trip, this enables syn-
chronising its repetition rate to that of the pump laser. Roughly 5%
of the output is split off to monitor the spectrum, and to synchronise
the laser frequency with the pump laser. In modelocked operation
our Ti:Sa laser emits a spectrum with a FWHM bandwidth of approx-
imately 100 nm around a central wavelength of 800 nm (a typical
output spectrum of the oscillator is shown in Fig. 15). The oscillator
system generates 6-7 nJ pulses with a fs pulse length, at a repetition
rate of 154 MHz.

4.2.2 The Nd:YAG pump laser system

The pump laser system delivers 90 mJ, 80 ps at 532 nm pulses, with
a repetition rate of 300 Hz as a pump beam for parametric amplifi-
cation. The seed for this pump laser system is a SESAM-modelocked
vanadate oscillator (Nd:YVO4) that generates 10 ps pulses around
a center wavelength of 1064 nm light, with a repetition rate of 77.8
MHz.

A photo diode at the output of the oscillator is connected to a delay
generator (DG645, Stanford Research systems). This delay generator
divides the oscillator signal to 300 Hz and sends out triggers to syn-
chronise all parts of the experiment. Part of the photo diode signal
is split off to lock the frequency of the Ti:Sa oscillator output to the
ND:YVO4 oscillator frequency by a proportional–integral–derivative
(PID) controller that can adjust the cavity length of the Ti:Sa oscilla-
tor through the previously mentioned piezo-controlled mirror mount.
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a) b)

Figure 14: absorbtion (a) and gain spectra (b) of Titanium-Sapphire
(Ti:AL2:O3), taken from [122].

Figure 15: Typical spectra for the Ti:Sa oscillator(red) and after parametric
amplification(blue).
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Figure 16: Schematic overview of the bounce amplifier and seeding oscilla-
tor to illustrate spectral selection through the 4f-grating-system,
pulse selection through an acousto-optical modulator (AOM) and
a electro-optical modulator (EOM), and amplification by graz-
ing incidence passes through a pair of Nd:YVO4 crystals, QCW
pumped by laser diodes (LD). After collimation to 1 mm, the
beam continues to a Pockels Cell.

These 1064 nm pump pulses are amplified through two amplifica-
tion stages. The first of these two stages, is a grazing-incidence or
bounce amplifier, with a design based on a system developed by our
colleagues at the Vrije Universiteit [123]. This amplification scheme
enables an extremely high single- or double-pass gain, through a ge-
ometry that combines internal reflection of the beam at the surface
of a Nd:YVO4 crystals with a slab geometry, side-pumped from one
side with an array of high peak-power quasi continuous-wave pump
diodes. Normally, the main disadvantage of such a pumping geom-
etry is the spatially strongly inhomogeneous gain profile. However,
in a grazing-incidence reflection geometry, the effect of the spatially
inhomogeneous gain on the beam profile before reflection is com-
pensated upon reflection. In this geometry, the beam experiences a
very high gain, as it stays close to the pumped surface where the
gain factor is the highest [124]. A schematic drawing of this amplifier
system is shown in Fig. 16. First, the spectrum out of the seed os-
cillator is clipped using a combination of 4f-grating-system that dis-
perses the spectral components spatially, while a slit near the Fourier
plane of the 4f system selects a part of the spectrum. As the position
and width are tunable, this enables a controlled way stretching of the
pulse length, and thus lowering the peak intensity. This is done to
avoid damage in our second Nd:YAG ’post’-amplifier system, and to
select an optimal spectrum for gain extraction in the Nd:YAG post-
amplifier. After the spectrum is narrowed, as the grating is imaged
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onto itself with the 4-f-system, the different spectral components are
recombined by a back-pass through the transmission grating, generat-
ing pulses with a typical pulse length of 80-90 ps. Then, fiber-coupled
pulse-picking devices are used to select and isolate pulses for ampli-
fication with a repetition rate of 300 Hz. For this purpose, we use
an acousto-optic modulator (AOM), which is an optical switch that
is based on diffraction by piezo-tranduced sound waves, to select a
µs time gate, in combination with a Electro-optic modulator (EOM)
to select out individual pulses from that time gate. Then, the light is
coupled from the fiber to air and passes through a pair of 3 dB optical
isolators to attenuate possible back reflections.

Next, the beam is amplified through two grazing incidence passes
through a 2x5x20 mm3, 1 at.%-doped Nd:YVO4 gain module, fol-
lowed by a single pass through a larger 4x6x20 mm3 gain module
after expansion of the beam. Both modules are side-pumped by out-
put laser diodes in quasi-continuous wave mode run at a current of
130 A and a voltage of 1 V. These modules emit around a wavelength
of 880 nm . The polarisation of the light emitted by these diode arrays
is rotated by a half-wave plate to match the optical axis of the crystal,
while a cylindrical lens is used to collimate the pump beam vertically
to respective beam heights of approximately 0.6 m and 1 mm, for the
first and second module. These beams pump the crystals to saturated
population inversion during 130 ms intervals that match the 300 Hz
repetition rate of the pulse selection. Between passes, back-reflections
are suppressed by an additional pair of 30 dB optical isolators, while
two iris diaphragms reduce the amount of amplified spontaneous
emission (ASE) propagating through the system. Otherwise, high lev-
els of ASE might result in gain depletion or damage in later amplifi-
cation stages.

After amplification in the bounce amplifier, the beam is collimated
and sent to a Pockels Cell that, in combination with a half-wave plate
and an isolator, acts as an optical switch. Due to some residual ellipti-
cal polarisation, a quarter-wave plate was used before the isolator to
increase the contrast of the isolator. This optical switch is used as a
10 ns long time gate to further suppress the µs-timescale ASE pedestal
with a 30 dB contrast. The Pockels cell has a half-wave voltage of ap-
proximately 10-11 kV. In the experiments in Ch. 5, it was run close
to half-wave voltage. At some point during the second experiment
we experienced electrical breakdown in the Pockel’s Cell driver. To
avoid such issues in our replacement driver, we limited the operating
voltage to 8 kV after the incident. In order to compensate for the loss
of transmission through the polariser, the pump current at which the
diodes were operated was raised to approximately 135 A. Pulse ener-
gies after the isolator were measured with values in a typical range
between 0.7 and 1 mJ, while the beam size was approximately 1 mm.
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For further amplification, these pulses are sent to the post amplifier
system that is depicted in Fig. 17. This system was built by one of my
predecessors and is described in more detail in [125]. At this stage,
the beam is amplified by a double-pass through a pair Nd:YAG gain
modules (REA series by Northrop Grumman). Both of these modules
contain a 14.6 mm long cylindrical rod that is side-pumped in quasi-
continuous wave operation by five rows of diode bars that are placed
around the rod. The first amplification module, which has a rod diam-
eter of 6.3 mm, is operated at 230 V and a peak drive current of 75 A
for an interval duration of 240 µs, while the second module, which
has a rod diameter of 10 mm, is is driven at voltage of 230 V and a
peak drive current of 90 A for an interval duration of 270 µs. When
pumped by the diodes at these high powers, these rods experience
thermally induced birefringence as well as thermal lensing. However,
a double-pass geometry, based on an approach pioneered by Scott
and de Witt in 1971 [126], partially compensates for the depolarisa-
tion effects caused by the thermal birefringence, as for each module
a Faraday rotator is placed in between the first and second pass that
changes the polarisation by 45 degrees, and another 45 degrees after
reflection. Thus some of the depolarisation caused by birefringence in
the first pass through the module is compensated during the second
pass through the module. Thin-film polarisers at the entrance of both
modules transmit the beam incident from the previous amplification
stages, while they reflect the beam after two passes, as its polarisation
has been rotated 90 degrees by the double pass through the Faraday
rotator.

For efficient energy extraction inside the rods, a relatively flat cross
section of the beam is selected by an aperture with a diameter of
5 mm after expansion of the beam diameter to 12 mm with a tele-
scope. This leaves a remaining pulse energy of about 0.4 mJ and a
truncated Gaussian beam profile with an approximately 15% inten-
sity drop off from the center to the edge of the beam. This relatively
flat beam profile enables a spatially homogeneous gain profile and
maximises energy extraction from the crystal. To avoid damage for
sensitive optics due to the strong diffraction caused by the propa-
gation of this top-hat-like beam profile, the beam is relay-imaged
throughout the optical system to ensure that the beam is near an
image plane of the aperture for all sensitive optics. The intermediate
foci of the relay-imaging system after the first module are located
inside vacuum tubes, to avoid thermal lensing or plasma generation
effects in air. The imaging lenses between the first and the second
module act as a telescope to increase the beam diameter to 8 mm in
order to extract more energy from the second rod, which has a larger
diameter.

The small-signal double-pass gain in the first module is approxi-
mately 30 dB, while the small signal double-pass gain in the second
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module is approximately 10 dB. Due to the very high gain in these
modules, all lenses and glass surfaces are placed at a small angle
with respect to the beam path to avoid parasitic lasing from back re-
flections. While the tilt of the lenses leads to astigmatism in the beam,
this is compensated for by tilting lens pairs in orthogonal directions.

After two passes in both modules, the pulse energy has been am-
plified to typical values of 15 mJ after the first module, and about
150 mJ after the second module. The output beam of the post-amp is
imaged on a BBO crystal, where the light is up-converted through fre-
quency doubling to a wavelength of 532 nm, leaving a pulse energy
of roughly 100 mJ. The remaining light of the 1064 nm fundamental
beam is picked off with a dichroic mirror that is mostly transparent
at 532 nm. Most of the fundamental energy is dumped at a beam
dump, while a tiny portion was directed to an imaging system for
beam diagnostics.
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Figure 17: Schematic overview of the post amplifier. The input beam is spa-
tially clipped by a 5 mm aperture and gets amplified through
a double-pass through a pair of rod shaped Nd:Yag modules.
After these amplification steps, the beam undergoes frequency
doubling inside a BBO crystal. The top-hat beam profile at the
aperture is relay-imaged onto all normal incidence mirrors, the
rods and the BBO crystal. Pulse energies at several locations are
indicated in blue. TFP:thin film polariser, FR:Faraday rotator.

4.2.3 The non-collinear optical parametric chirped-pulse amplifier system
(OPA)

In the next stage, the 532 nm pump beam described in the previous
section, is used to amplify the femtosecond pulses from the Ti:SA
oscillator in the non-collinear optical parametric chirped-pulse am-
plifier (NOPCPA) built by my co-worker Mathijs Jansen [127]. This
type of amplifier offers a very high gain over a very large band-
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width, which makes them well suited for amplifying the broad spec-
tra required for short pulses [108]. The basis of these amplifiers is a
non-linear three-wave-mixing process that is schematically shown in
Fig. 19. In this process, pump photons are down-converted through
difference frequency generation to signal photons, with the properties
of the seed, and to idler photons inside a nonlinear optical crystal (in
our case β-BBO). In order to use the picosecond pump pulses to effi-
ciently amplify the femtosecond seed pulses through this parametric
process, a good temporal overlap between the two pulses is required.
Therefore, a stretcher grating is used to elongate the infrared pulses
from 20 fs to several tens of ps by inducing a controlled amount
of dispersion. After amplification, a grating compressor compensates
for most of the dispersion that is induced by the combination of the
stretcher, as well as additional dispersion up to third order from dis-
persive elements in the optical path such as the BBO-crystals in the
OPA, resulting in 25-30 fs output pulses.
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Figure 18: Schematic overview of the parametric amplifier system, in which
532 nm pump photons are effectively converted into signal pho-
tons with the properties of the 800 nm seed beam through para-
metric amplification. The seed beam is amplified from a couple
of nJ up to 15 mJ inside three amplification crystals (BBO). The
pump beam is split in two arms with a thin film polarizer (TFP).
one arm contains the first two amplification stages, while the
other arm contains the third stage. Delay stages in the path of the
signal beam enable fine tuning of the temporal overlap between
the two beams.

To keep the signal and idler photons generated at different posi-
tions in direction of the propagation of the pump beam phase-matched,
the combined k-vectors of the signal and idler photons inside the
crystal should closely match those of the pump photons. While its
possible to use the birefringence of the gain crystal in combination
with an appropriate angle θ between the optical axis of the crystal
and the pump to enable phase matching in a collinear geometry for
a a narrow band, the phase-matching bandwidth in such a geometry
is limited due the dispersion in the crystal [108]. By contrast, in a ge-
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ometry where the pump and signal beam are non-collinear, the angle
between the pump beam and the signal beam offers another knob to
tune the phase matching. Using this extra degree of freedom, it has
been shown that for β-BBO good phase-matching conditions can be
achieved for a broad band of wavelengths, enabling an almost flat
gain spectrum between 700 and 1000 nm at a non-collinear angle of
α ≈ 2.4◦ [108].

In the experiments described in Ch. 5, we used gold-coated reflec-
tion gratings with 600 and 1200 lines per millimeter, respectively, for
the stretcher and compressor. Blazed gratings can reach very high
efficiencies in their Littrow configurations, in which the incident an-
gle is perpendicular to the step surface. However, the separation of
the in going and outgoing beams in a Littrow configuration was im-
possible due to the combination of small line spacings for the com-
pressor and a designed spatial seperation between compressor grat-
ings of only a couple of centimetres. Therefore, the compressor was
operated in a non-Littrow configuration, in which the combined ef-
ficiency of the compressor grating pair was only 40%, For the work
in Ch. 6, we switched to transmission grating pairs with line densi-
ties of 1400 lines per mm to improve the efficiency. As the input and
output beams are automatically separated for transmission gratings,
it was possible to operate these in Littrow configuration. These grat-
ings, which where produced by Lightsmyth, have a high designed
diffraction efficiency of over 94% over a broad wavelength range. A
more in-depth description of the stretcher compressor configurations
can be found in [127]. In the NOCPA amplifier, depicted in Fig. 18,
the stretched seed pulses are amplified from in three stages.

As a non-linear amplification medium, 5x5x5 mm BBO crystals are
used in the first two stages, while a 10x10x5 mm BBO crystal is used
in the final stage. Before the first stage, the pump beam is split into
a beam with a pulse energy of 12 mJ beam for the first two OPA am-
plification stages and a beam with a pulse energy 78 mJ for the final
amplification stage, using a combination of a half-lambda waveplate
and a thin-film polarizer. The pump beam at the first two crystals
is an image of the top-hat beam at the doubling crystal in the post-
amplifier, demagnified by a telescope to roughly 2 mm. Before the
beam is amplified at each amplification crystal, a delay stage is used
to fine-tune the time-overlap of the pulses of the seed and the pump
beam. The BBO crystals are kept at a temperature of 60

◦ to avoid
water absorption and are mounted on rotation stages that enable fine-
tuning of the phase-matching angle.

At the first two stages, the infrared beam is amplified from a pulse
energy of a nJ to roughly a mJ. Then, the infrared beam is expanded
to a diameter of about 8 mm, in order to match the size of pump beam
at the third crystal. After amplification at the third crystal, the pulse
energy is increased to a typical value of 15 mJ. The spectrum after
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Figure 19: Schematic overview of the non-collinear optical parametric ampli-
fication process, taken from [108, 127]. b) In this process 532 nm
pump photons are split into signal and idler photons. c) Ge-
ometry of the process, α is the non-collinear angle between the
pump and the seed beams, θ is the angle between the optical axis
and the pump. a) Phase-matching curves. For a non-collinear an-
gle α of 2.4◦, phase-matching conditions can be simultaneously
achieved for a broad range of wavelengths.
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this final amplification stage is shown in red in Fig. 15. After the third
stage, a spatial filter was used to clean up the beam profile. This filter
consists of a 0.2 mm hole drilled in a 5 mm boron nitride disk that
is placed at the focus of a pair of relay-imaging curved mirrors and
cuts about 25% of the remaining pulse energy. Finally, the infrared
pulses are compressed by the grating compressor to a pulse length of
roughly 25 fs, which was measured using frequency-resolved optical
gating (FROG) [128]. After compression, the remaining pulse energy
was approximately 8 mJ.

4.2.4 Generating EUV pulse pairs through high-harmonic generation

In order to generate high harmonics, pulses are focused by a lens (f
= 25 cm) into a jet of noble gas. This gas jet is produced by a noz-
zle situated in the vacuum system as depicted in Fig. 20 a). As the
pulses are focused about 8 mm from the nozzle, a 1.4 mm thin in-
ner diameter stainless steel tube is used to guide the gas from the
nozzle to the interaction region. This tube is intersected by a the laser
through two holes drilled by the focused beam itself. The experiments
are kept at intermediate vacuum conditions to avoid significant reab-
sorbtion of harmonics outside of the interaction region by two low-
vibration turbo-molecular pumps (Pfeifer HiPace 700) in combination
with a scroll pump (Edwards XDS10) with flexible bellows wrapped
in vibration-damping foam. Typical pressures during operating con-
ditions were measured to be roughly at 10−7 mbar measured near
the camera, while the pressure closer to the HHG interaction region
was on the order of 10−3 mbar during operation, due to the injection
of gas in to the vacuum chamber.

A pulsed piezo valve (developed by M.H.M. Janssen, Vrije Univer-
siteit Amsterdam) limits the gas flow of the jet out of the nozzle to
periods of roughly 30 µs. These pulses are synchronised with the
laser system to limit the quantity of noble gas that is used and re-
duce the gas load on the turbo-molecular pumps. The focusing lens
is situated on a translation stage, which enables control of the relative
distance between the focus and the interaction region. The position
of the focus relative to the interaction region can be used to tune
phase-matching conditions, as described in Sec. 4.1.2.

In the experiments described in this work, harmonics where gener-
ated in argon and krypton for the support-based and rotational DSI
experiments respectively. Compared to other noble gases, these gases
have a relatively low ionisation potential (respectively, 15.763 eV and
13.9996 eV for argon and krypton), which enables a relatively high
ionisation cross-section. However, as a trade-off they have lower cut-
off frequencies (see Eq. 59) than higher ionisation potential alterna-
tives like Neon or Helium. To achieve efficient phase-matching con-
ditions between the terms in Eq. 63, gas backing pressure and the
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Figure 20: Schematic overview of the HHG experimental setup for the ro-
tational DSI experiment. a) High-harmonic generation setup for
both DSI experiments. Harmonics are generated in the HHG in-
teraction zone (a picture that shows the gas jet in which harmon-
ics are generated during operation is shown in the green outline).
Behind the interaction zone, a combination of a 4 mm aperture
and a 200 nm aluminium filter are used to filter out the infrared
fundamental beam. b) rotational DSI imaging setup. The filtered
HGG beam is one-to-one imaged to a point shortly before a sam-
ple holder. The sample is mounted on a rotational piezo-stage
that is used to scan the sample orientation during the experiment.

position of the focus are tuned before each experiment by optimising
on the output flux. While the exact tuning depends on varying laser
conditions, typical values for the backing pressure were between 6

and 8 bar for argon.
High harmonics are generated in a low-divergence cone and co-

propagate with the fundamental beam. Due to the low efficiency
of the high-harmonic generation process, the high-harmonic flux is
many orders of magnitude smaller than that of the fundamental beam.
Therefore, the infrared beam must be filtered out effectively to be able
to detect high harmonics on top of the background. We apply pre-
filtering of the light using a 4 mm aperture, located roughly 15 cm
downstream from the interaction zone. This aperture preferentially
blocks the fundamental beam, as the divergence of the high harmon-
ics is much lower due to phase-matching effects. Then, a 200 nm
aluminium membrane reflects most of the remaining infrared beam,
while it transmits approximately 60-70% of the light for the high har-
monic orders (between 28 and 45 nm).

4.3 generating extreme ultra-violet pulse pairs

4.3.1 Fourier-transform spectroscopy and infrared pulse pairs

In most HHG imaging experiments, single harmonics are selected
from broad spectra using spectral filtering methods in order to satisfy
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the temporal coherence requirements for CDI that are discussed in
Sec. 3.5.2. Instead, in our EUV experiments we have applied Fourier-
Transform spectroscopy on phase-locked high harmonic pulse pairs
to obtain spectrally resolved signals at seperate wavelenghts, from
which we reconstruct images with the methods described in Sec. 3.4.

To generate these HHG pulse pairs, the femtosecond pulses of the
driving laser are split into pulse pairs in a common-path interferom-
eter based on two pairs of birefringent wedges [129]. A schematic
overview of this interferometer is shown in Fig. 21. An incident pulse

Figure 21: Schematic drawing of the common-path interferometer. The red
polarisation diagrams indicate the polarisation of the beam at dif-
ferent points, while the blue diagrams show the orientation of
the fast axes of the wedge pairs. A manual translation stage and
a piezo-activated stage can control the amount of birefringent ma-
terial traversed by the beam (and thus the time delay between the
pulses), by moving one of the wedges in both wedge pairs in
the direction of the double sided arrows. After the beam travels
through both pairs of wedges, a thin-film polariser selects out a
mutual polarisation direction from two pulses with orthogonal
polarisations. Taken from [129].

is split into a pulse pair by a first set of birefringent wedges. This pair
of wedges, with an optical axis that is rotated by 45

◦ with respect
to the polarisation of the incident beam, induces a delay of several
picoseconds between the extraordinary and ordinary rays.

One of the wedges is mounted on a manual translation stage for
rough tuning of this induced delay. A second pair of wedges, which
has its fast and slow axes transposed with respect to the first pair,
induces a time delay in opposite direction. One of the wedges in this
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second pair is mounted on a linear piezo stage (Physik Instrumente
GmbH, model number P-625.1CD).

The piezo stage enables fine control of the time delay between the
pulses, by changing the amount of birefringent material traversed by
the beam. This stage has a total travel range of 500 µm, a resolution
of 1.4 nm and a repeatablility of 5 nm. During operation the manual
stage is tuned such that the pulses are overlapping while the piezo
stage is approximately in the middle of its travel range.

The wedges in the interferometer consist of α-BBO and have an
apex angle φ of 15

◦. This material was chosen for its strong birefrin-
gence (∆n = ne−no = −0.11 at 800 nm) and low non-linear suscepti-
bilities. The delay between pulses that is induced by each wedge pair
scales linearly with the amount of birefringent material traversed by
the beam. The specifications of the crystal combined with those of the
piezo stage correspond to a maximum time-delay scan range of 50 fs,
a time-delay resolution of 0.5 as and a repeatability of 0.14 as. Finally,
reflection on a broadband thin-film polariser (TFP) projects the polar-
isation of the two pulses to the vertical axis. As half of the energy is
reflected by the TFP this results into two pulses with a pulse energy
of roughly 1 mJ each, which are used for high harmonic generation.

To avoid ionisation and heating effects of the first pulse from in-
fluencing the high harmonic generation process of the delayed pulse,
one of the wedges in the interferometer is slightly tilted, inducing a
280 µm split in the focal plane.

4.4 euv imaging setups

In the DSI experiments of Ch. 5, the scattering samples were placed
in a chamber downstream from the filter. Due to the large distance
between the interaction zone and the filter, which was necessary to
avoid damage from the infrared beam on the filter, the beam at the
sample was significantly larger than the specimen. In the rotational
DSI experiments of Ch. 6, the HHG sources were imaged one-to-one
to a plane located at roughly 5 cm to the sample using a boron-
carbide (B4C) coated toroidal mirror with a focal length of 25 cm, in
order use the available photons more efficiently. The distance of the
focus to the sample was a trade-off between having significant beam
overlap at the sample, as required for DSI, and photon efficiency.
This toroidal mirror was designed to have a broadband reflectivity
of around 80% at a 7.5◦ grazing incidence angle. This reduced the
beam diameter near the sample by roughly a factor of two compared
to the DSI experiment, resulting in a higher flux at the sample despite
increased losses from the imaging system. A mechanical feedthrough
system enabled control of the toroidal mirror alignment. The sam-
ples for these experiments were placed in a sample holder, mounted
on a piezo-stage with two linear positioners (Smaract SLC-1730), that



4.4 euv imaging setups 67

were used to control the position of the sample in the transverse di-
rections to the beam and switch between a grating spectrometer and
imaging sensors, while in the rDSI experiment the 2D stage was com-
bined with a piezo-driven rotation stage (Smaract SR-2812), which
is depicted in the inset of Fig. 20. In the rDSI measurements, as the
beam was only slightly larger than the sample and the axis of rota-
tion was not perfectly aligned with the center of the sample, slight
re-calibrations of the 2D linear position were necessary to realign the
center of the sample with the beam. Diffraction patterns for the EUV
experiments where captured using a CCD camera (Andor Ikon-L 936

SO, 2048x2048 pixels, pixel size 13.5 µm).
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5.1 abstract

We demonstrate a novel imaging approach and associated reconstruc-
tion algorithm for far-field coherent diffractive imaging, based on the
measurement of a pair of laterally sheared diffraction patterns. The
differential phase profile retrieved from such a measurement leads to
improved reconstruction accuracy, increased robustness against noise,
and faster convergence compared to traditional coherent diffractive
imaging methods. We measure laterally sheared diffraction patterns
using Fourier-transform spectroscopy with two phase-locked pulse
pairs from a high-harmonic source. Using this approach, we demon-
strate spectrally resolved imaging at extreme ultraviolet wavelengths
between 28 and 35 nm.

This chapter was published as the following paper: G. S. M. Jansen, A. de Beurs, X.
Liu, K. S. E. Eikema, and S. Witte, Diffractive shear interferometry for extreme ultraviolet
high-resolution lensless imaging, Opt. Express 26, 12479-12489 (2018)
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5.2 introduction

In recent years, coherent diffractive imaging (CDI) has enabled vast
progress in high-resolution microscopy [5, 40, 46, 130, 131]. Contrary
to traditional microscopy, CDI does not rely on lenses to form an
image from scattered light emerging from a sample. Instead, CDI
employs numerical phase retrieval algorithms to reconstruct an im-
age based on the recorded diffraction pattern [33, 82]. As the image
resolution in CDI is not limited by focusing optics, it is well suited
for microscopy using x-rays [79], extreme ultraviolet (EUV) radiation
[46, 131] or electrons [132]. Despite the high-resolution results, the
quality of the reconstructed intensity and phase of the images de-
pends strongly on the signal-to-noise of the diffraction pattern [133].
Furthermore, other constraints such as finite support, positivity or
atomicity are often required for convergence. This has led to the de-
velopment of ptychography [21, 58, 134], which eliminates the need
for strong constraints by taking much more data in a systematic man-
ner.

The central challenge in CDI is to acquire knowledge of the phase
of the recorded field. Performing a direct measurement of the phase
is therefore beneficial, but typically does come at the cost of increased
measurement complexity. The main example of such an approach is
Fourier transform holography, in which the interference between a
reference wave and a diffraction pattern is recorded [50, 135–138].
Holography allows for a simple image reconstruction which does not
rely on iterative algorithms, but the image resolution and support
are typically limited by the numerical aperture and wavefront of the
reference wave.

Spatial phase determination of optical fields is a challenge that has
been addressed in other areas as well. A specific approach that has
shown promise in the context of CDI is lateral shearing interferometry
(LSI) [139, 140], a technique that is used to reconstruct the wavefront -
or phase profile - of a beam by interfering is with a sheared copy of it-
self. This results in an interference pattern that depends on the spatial
derivative of the wavefront, which can be retrieved by spatial Fourier
filtering. The wavefront can then be reconstructed by integration of
the measured phase derivative. As a single LSI measurement only
yields the one-dimensional derivative of the phase along the shear
direction, several measurements with different shears are in princi-
ple necessary to retrieve the full 2D wavefront. Furthermore, accurate
phase determination is only possible if the individual beams have
smooth intensity profiles. The LSI phase profile can also be measured
by phase shifting one of the beams and measuring the interference
pattern for several phases. Isolation of the oscillating interference
term then allows for direct determination of the interference phase.
Such a measurement allows for measurement of much more complex
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interference patterns. It has been shown that a collection of shear
interference patterns for varying shears allows for the full reconstruc-
tion of the original electric field [141]. Simple numerical propagation
of the electric field then enables phase contrast microscopy in various
geometries.

In this article, we build upon the concept of lateral shearing in-
terferometry to acquire differential phase information of diffraction
patterns recorded with extreme ultraviolet radiation. The resulting
diffraction intensity and differential phase information are then used
as input for an iterative algorithm, that can reconstruct the full elec-
tric field based on a single laterally sheared diffraction pattern. The
measurement and reconstruction of these diffraction patterns can be
summarized as diffractive shear interferometry (DSI). In comparison
with traditional coherent diffractive imaging methods, we find that
our approach provides an improved reconstruction accuracy and con-
vergence. For an experimental demonstration of the DSI approach,
we measure laterally sheared diffraction patterns at several extreme
ultraviolet wavelengths and numerically reconstruct high-resolution
images from them.

To achieve spectral resolution, we employ spatially-resolved Fourier-
transform spectroscopy (FTS) with a pair of phase-locked high-harmonic
generation (HHG) sources [129]. A previous limitation of this FTS
approach for HHG-based imaging has been the fact that the HHG
beams need to be spatially displaced to avoid cross-talk in the HHG
process [142]. The DSI approach presented here uses this sheared
beam geometry in a natural way, even allowing improved reconstruc-
tion accuracy and robustness compared to single-beam experiments.
From our results we find that our algorithm is able to accurately re-
construct complex electric fields even in the presence of significant
noise. Coherent diffractive imaging with HHG sources has great po-
tential for nanoscale imaging [46, 131]. Furthermore, elements often
possess distinct absorption features at EUV wavelengths. Therefore,
the present work forms a step towards EUV imaging with element-
specific contrast.

5.3 spatial shearing interferometry of diffraction pat-
terns

5.3.1 Interference of diffraction patterns

In traditional CDI, the object is illuminated using a single beam of co-
herent, monochromatic light. The transmitted or reflected light scat-
ters from the object and forms a diffraction pattern which is captured
using a camera. In order to combine CDI with lateral shearing inter-
ferometry, we use two identical, mutually coherent beams to illumi-
nate the object at slightly differing angles, as schematically depicted
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Figure 22: Schematic overview of lensless imaging by diffractive shear inter-
ferometry. Two identical and coherent beams, E+ and E−, illumi-
nate a transmissive object such that the angle between the beams
is α. This results in two far-field diffraction patterns on the cam-
era which are slightly displaced relative to each other. The black
region on the screen indicates where the diffraction patterns over-
lap and interfere.

in Fig. 22. For a thin, single-scattering object, the electric fields of the
beams can then be written as the electric field of the illumination
multiplied by the object transfer function. If dk is the wavevector cor-
responding to the half angle α/2 between the two beams and X the
transverse position in the object plane, the electric field correspond-
ing to a single beam appearing directly after the object can be written

E± = Ã(x) exp[i(Φ̃(x)± dkx)] exp(−iωt±), (64)

where "+" and "-" correspond to the individual beams as indicated
by Fig. 22. Effectively, the fields in Eq. (64) consist of the amplitude
Ã(x) and phase Φ̃(x) of the electric field transmitted by the object,
multiplied by a linear phase ramp exp(±idkx) that distinguishes the
two individual beams. Finally, there is a global phase term exp(iωt±).
This electric field propagates towards the detector where the interfer-
ence between E+ and E− is detected. In the case of far-field diffrac-
tion, the electric field can be described by the Fourier transform of
the electric field in the object plane. The detected intensity can then
be written as

I(k) =A(k+ dk)2 +A(k− dk)2+

A(k+ dk)A(k− dk) exp{i[Φ(k+ dk) −Φ(k− dk)+

ωT ]}+ c.c., (65)

where the combined amplitude and phase A(k) exp[iΦ(k)] at the cam-
era is related by Fourier transform to the combined amplitude and
phase Ã(x) exp[iΦ̃(x)] at the object. For simplicity, the time differ-
ence between the beams is written as T . Compared to single-beam
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CDI, the detected intensity in DSI contains more information as it
encodes the phase shear in the interference term. This will naturally
lead to a more stringent camera-space constraint that can be expected
to aid convergence of phase retrieval algorithms [143]. Yet the avail-
able information can be exploited more effectively by separating the
amplitude and phase terms in the interference term A(k+ dk)A(k−

dk) exp i[Φ(k+ dk) −Φ(k− dk)]. This can be achieved by perform-
ing measurements at multiple time delays T , as the interference is
the only term in Eq. (65) that oscillates at frequency ω. Going one
step further, taking a series of measurements as a function of T is
equivalent to Fourier transform spectroscopy, and can even be used
to extract interference terms for all frequencies present in the case of
broadband illumination. Therefore, the proposed DSI approach is in-
trinsically compatible with polychromatic or broadband light sources
such as high-harmonic generation, and can be used for spectrally re-
solved imaging at extreme ultraviolet wavelengths [142].

5.3.2 Image reconstruction

To reconstruct an image of the object, retrieval of the full electric
field A(k) exp[iΦ(k)] is required. Starting with the isolated interfer-
ence term from Eq. (65), we will use an iterative algorithm to recon-
struct the electric field. This algorithm relies on a set of constraints to
the electric field, applied in different planes connected by free-space
optical propagation [5, 33, 82]. The first constraint is provided by the
measured data: the electric field at the camera plane should be consis-
tent with the measured result. For our second constraint we will use
a finite support; the electric field in the object plane is only non-zero
in a certain limited window.

In traditional CDI, the most used camera plane operator is the mod-
ulus constraint: the amplitudes of the electric-field estimate are set to
the measured values, while the estimated phases are preserved. How-
ever, in DSI the modulus constraint is not the most suitable opera-
tor for reconstructing interferometrically sheared diffraction patterns.
This is because the measured intensity pattern A(k + dk)A(k − dk)
is not equal to the intensity A(k)2 of the electric field to be recon-
structed. Even though a modulus constraint based on Eq. (65) may
be envisaged, it does not take into account the available phase infor-
mation in an optimal way. We therefore derive a new camera plane
operator that makes more efficient use of the amplitude and phase
information available in DSI.

Starting with the nth guess of the electric field

En(k) = An(k) exp[iΦn(k)] (66)

at the camera and the complex measured interference pattern

M(k) = A(k+ dk)A(k− dk) exp{i(Φ(k+ dk) −Φ(k− dk)]}, (67)
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it can be seen that division of the measured data by a sheared copy
of the electric field guess yields a new electric field guess

En+1(k+ dk) =
M(k)

E∗n(k− dk)
. (68)

If the original guess of the electric field is accurate, the new elec-
tric field guess is in fact equal to a shifted version of the electric field.
Therefore, division of the measured data by a negatively sheared elec-
tric field guess yields a positively sheared electric field guess. This op-
eration forms the basis of a useful camera-space constraint for inter-
ferometrically sheared diffraction pattern reconstruction. A general
camera-space constraint can be written as

En+1(k) = (1−β)En(k)+

β

2

[
M(k− dk)En(k− 2dk)

|En(k− 2dk)|2 +α2
+
M∗(k+ dk)En(k+ 2dk)

|En(k+ 2dk)|2 +α2

]
, (69)

which is a linear combination of the old guess and the average of the
new guesses for the positively and negatively sheared electric fields.
The numerical constant β determines the strength of the correction to
the electric field guess and is typically set to 0.9. Instead of a direct
division by the electric field E, we multiply by E∗/(|E|2 + α2), where
α is a regularization constant that prevents errors arising from divi-
sion by zero. For noisy data, we expect that the best results will be
obtained when α is comparable to the noise floor.

In combination with a finite object support, the presented novel
camera-space constraint is sufficient for retrieval of the full electric
field. A basic approach to include a support constraint in the algo-
rithm is using the error-reduction method, where all values outside of
the support are set to zero. The output-output algorithm and hybrid
input-output algorithms provide two alternatives which have been
shown to provide different convergence properties [33, 144].

5.3.3 Comparison between DSI and single-beam CDI

To investigate the efficiency of the proposed phase-retrieval algorithm,
we performed simulations comparing DSI to traditional single-beam
CDI methods. Example datasets for CDI are produced by simulating
far-field diffraction patterns with Poisson noise. We simulated sev-
eral diffraction patterns with varying signal-to-noise ratio (SNR) by
adjusting the total number of collected photons. To account for cam-
era readout noise, we added Gaussian background noise with a stan-
dard deviation of 10 counts. Starting with a wide initial support, we
reconstructed the image using both hybrid input-output and error-
reduction in an alternating fashion. The shrinkwrap procedure was
used to adaptively update the support [80]. The results of these sim-
ulations can be seen the first two columns of Fig. 23. In this figure,
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Figure 23: Comparison of traditional single-beam CDI with the proposed
diffractive shear interferometry. Each row compares the two
methods for identical signal-to-noise levels. The first two columns
show the simulated diffraction patterns and reconstructions, re-
spectively, for single-beam CDI. Columns three and four show
the simulated DSI amplitude and phase. Column five shows the
image retrieved using our algorithm. Finally, the last column com-
pares the accuracy of both methods. The error is calculated from
the RMS difference between reconstruction and original image.
For clarity, the error calculation only considers the direct vicinity
of the object.

each row has a different SNR. The top row is simulated such that we
get 108 counts in the brightest pixel, leading to a SNR of 104 in the
center of the diffraction pattern. The second and third row have SNRs
of 1.8× 103 and 0.6× 103 respectively.

For DSI, we simulated several datasets with noise levels similar
to the CDI simulations. This was achieved by adding Poisson noise
and a Gaussian background to the shear interferometry signal. To
also account for noise in the phase of the simulated interference pat-
tern, we multiplied the simulated noise with a random phase pattern
before addition to the noise-free diffraction pattern. The amplitude
and phase of the simulated diffraction patterns can be seen in the
third and fourth columns of Fig. 23 respectively. We verified that this
method leads to realistic interference signals by comparing the sim-
ulated diffraction patterns to the result of a full simulated Fourier
transform scan. Furthermore, we compared the simulated data to real
measured EUV shearing interferometry data (section 5.4).

Reconstructions of the simulated DSI signals are shown in the fifth
column of Fig. 23. These reconstructions were obtained by combining
the algorithm presented in section 5.3.2 with a shrinkwrap procedure
to find the support of the image. In order to compare these results to
those obtained from the CDI simulations, we calculate the accuracy
of the reconstructions. This is defined as the RMS difference between
the reconstruction and input image, averaged over the number of
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pixels and only calculated for the pixels in the direct vicinity of the
original object. This calculation is corrected for spatial shifts and a
global phase offset, which are free parameters for CDI. For DSI, we
find that there is a limited number of spatial shifts and phase offsets
compatible with the measured data. This is directly related to the
phase information in the recorded diffraction pattern, as a shift of the
object translates to a phase tilt in the far-field diffraction pattern. After
shearing according to formula 67, this phase tilt reduces to a phase
offset in the measured data. Reversing the process shows that a phase
offset in the measured data leads to a shift of the reconstructed object,
and any image reconstruction has to match this constraint.

From the reconstruction accuracy comparison in the sixth column
of Fig. 23, it is clear that DSI consistently leads to a better solution
than single-beam CDI. In addition, the reconstruction of DSI patterns
appears to converge slightly faster than the reconstruction of single-
beam CDI patterns. There are various parameters which influence the
performance of DSI reconstruction, of which the value of the shear is
the most critical. For the simulations presented in Fig. 23, we assumed
that the shear was known accurately. For real measurements, accurate
initial knowledge of the shear may not be possible, especially in cases
where the shear has to be known with sub-pixel accuracy. In such
cases, it is possible to extend the phase retrieval algorithm with a
shear optimization step. As will be mentioned in section 5.4, for our
present reconstructions we have used a manual search to find the
correct shear.

Furthermore, the value of the shear has a strong influence on the
measured signal and therefore on the retrieval process. If the shear
is reduced to zero, the shear interferometry signal reduces to the
single-beam far-field diffraction pattern and the phase information
is reduced to zero. As the shear is increased, both the intensity of the
diffraction pattern and the phase information become more complex-
structured. Finally, very large shears lead to a reduced overlap be-
tween the diffraction patterns, leading to a weaker signal that is more
sensitive to noise. We simulated several measurements with different
shears, and found that larger shears lead to slightly better results and
faster convergence, provided that the SNR remained sufficiently high.
The shear used in Fig. 23 was approximately equal to one speckle of
the diffraction pattern (the inverse of the object size), which is found
to be a good compromise between signal strength and noise sensitiv-
ity.

5.4 experimental demonstration of diffractive shear

interferometry using high-harmonics

As already noted in section 5.3.1, a promising approach to measuring
DSI signals is through the use of a setup for Fourier-transform spec-
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troscopy. Such a measurement enables coherent diffractive imaging
using all wavelengths present in the illumination. We implement this
scheme by employing a phase-locked pair of high-harmonic gener-
ation (HHG) sources to perform wavelength-resolved microscopy at
EUV wavelengths. The phase-locked EUV pulse pair is produced by
HHG upconversion of tightly phase-locked pairs of infrared driving
pulses that have been produced by an ultrastable common-path inter-
ferometer [129]. Typical parameters of these infrared pulses are a cen-
tral wavelength of 800 nm, a pulse energy of 1 mJ in each of the beams,
a 300 Hz repetition rate and a pulse duration of 25 femtoseconds. A
basic layout of the setup used for HHG and subsequent DSI imaging
of samples in a transmission geometry is presented in Fig. 24(a). A
typical EUV spectrum generated in Argon is also shown in Fig. 24(b).
It is important to note that the HHG spectrum can change signifi-
cantly due to small changes in the driving laser alignment.

Lens CCDTube Aluminum
(a)

(b)

Sample

Figure 24: (a) Schematic overview of the setup used for EUV Fourier-
transform interferometry. The output of a common-path interfer-
ometer is focused by the lens into a gas jet confined to tube. The
resulting EUV pulse pair is separated from the infrared using
an Aluminum filter and detected using an Andor Ikon-L CCD
camera. A transmissive object can be positioned between the Alu-
minum filter and the camera using a remotely controlled trans-
lation stage. (b) Typical high-harmonic spectrum generated in
Argon, measured through Fourier-transform spectroscopy in the
same setup without an object in the beam.

The Fourier transform spectroscopy settings must be adapted to the
HHG source spectrum. In practice, this means recording a few hun-
dred time steps, spanning an optical path difference of at least two
optical cycles of the driver in steps smaller than half the wavelength
of the shortest harmonic [129, 142]. These settings depend strongly
on the on-sample illumination spectrum. For monochromatic illumi-
nation, just four time steps would suffice.
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5.4.1 Fourier-transform holography

As a first experiment, we used focused ion-beam milling to fabricate
the sample shown in Fig. 25(a). The sample consists of our institute
logo and in addition three circular apertures with diameters 12, 4

and 1 µm, respectively. The apertures act as references for Fourier-
transform holography (FTH) by providing a spherical wave which
interferes with the diffraction pattern arising from the logo [136]. For
such a sample, a spatial Fourier-transform of the far-field diffraction
pattern directly yields multiple images of the sample. The resolution
of these images is determined by the diameter of the associated ref-
erence aperture. Therefore, FTH can provide an initial low-resolution
guess of the image from which it is possible to determine the sup-
port. It is then possible to use phase-retrieval methods to improve the
image resolution and contrast [135, 145].

(a) SEM Image

(b) Broadband Diffraction (d) Phase at 32 nm (f) FT of C and D

(e) FT of C(c) Intensity at 32 nm

Figure 25: Extreme ultraviolet DSI of a transmissive sample with multiple
holographic references.(a) Scanning electron microscope image
of the sample used for the initial measurements at EUV wave-
lengths. The sample consists of our institute logo and three circu-
lar apertures with diameters 12, 4 and 1 µm respectively acting
as holographic references. (b) Broadband EUV transmission of
the sample. (c) Intensity at 32 nm retrieved from the FTS-scan. (d)
Phase of the signal at 32 nm. (e) Hologram acquired using just the
intensity at 32 nm as shown in (c). (f) Hologram acquired using
both intensity and phase information at 32 nm. The inset show
the hologram arising from interference with the 4 µm aperture.

The results obtained using only FTH are shown in Fig. 25. We used
Fourier-transform spectroscopy to retrieve monochromatic shear in-
terferometry signals for several individual high-harmonics. Every im-
age of the Fourier transform spectroscopy measurement consists of a
10 second exposure, a 1 second exposure and a 0.1 second exposure
to acquire the high dynamic range necessary for high-resolution CDI.
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The spectral resolution in this experiment is 96 THz, providing an
effective bandwidth ∆λ/λ of approximately 1/100 for the retrieved
shear interferometry signals around 30 nm wavelength. As an exam-
ple, we show the amplitude and phase of the shear interferometry sig-
nal for the 25th harmonic at 32 nm in Fig. 25(c) and (d) respectively.
To illustrate the importance of the phase pattern, Fig. 25(e) shows the
hologram calculated from the amplitude data alone, which has low
contrast and contains clear distortions. We find that it is possible to re-
trieve a good-quality hologram from the shear interferometry signal
if both measured amplitude and phase are used to calculate the holo-
gram, as shown in Fig. 25(f). Note that the holograms arising from
the 1 µm aperture are not visible, which is probably due to limited
signal-to-noise.

5.4.2 DSI reconstruction

(a) (b) (c) (d)

(e) (f ) (g) (h) 1
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Figure 26: DSI reconstruction results of the multi-wavelength data presented
in Fig. 25. (a-d) for the ARCNL research center logo. Measured
amplitude of the DSI patterns for the 29th, 27th, 25th and 23rd
harmonics with wavelengths 28 nm, 30 nm, 32 nm and 35 nm
respectively, shown on a logarithmic color scale. (e-h) Recon-
structed images for the 29th to 23rd harmonics respectively, show
on a linear grayscale. The images all have a height and width
of 200 pixels, while the sample has a width of 40 µm. The dif-
ference in magnification follows directly from the differences in
wavelength between the images.

The holography results provide a decent starting point for electric
field reconstruction using DSI. For this reconstruction the hologra-
phy result is used to determine an initial support. The determination
of the initial support is slightly complicated by the presence of the
reference apertures, as it is important to position the supports for
the apertures at the correct positions relative to each other and to
the main object. To accommodate for slight errors in this process, we
start the image reconstruction with an object support that is larger
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than the image obtained through holography. The object support is
determined from the hologram by thresholding and expanding the
result by a few pixels. We found that applying the object support us-
ing a linear combination of error reduction and hybrid input-output
leads to the best convergence.

As with the DSI simulations, we combine the image reconstruc-
tion with a shrinkwrap routine. In addition, we performed a manual
parameter search to find the optimal value for the shear. A simple
search algorithm was used to find the phase offset in the measured
data. These steps are performed by comparing the convergence over
several hundred iterations for various values of the shear and phase
offset. Typically, a retrieval sequence to reconstruct an image with
known shear and offset phase is as follows: Using the initial support,
600 iterations of DSI with HIO and ER are performed, such that every
object space operation is a linear combination of 10% HIO and 90%
ER. During these iterations, the value for the regularization constant
α is ramped down from 80 to 40. Then we perform six rounds of
shrinkwrap followed by 200 DSI+ER+HIO iterations with constant α.
As shown in Fig. 26, we were able to reconstruct high-quality images
using this approach for four individual high-harmonics between 28

and 35 nm from a single measurement.

5.4.3 DSI imaging of complex objects

To verify that DSI also works for more complicated physical data, we
fabricated another sample, shown in Fig. 27(a). It was produced by
focused ion-beam (FIB) milling in a 100 nm gold layer on top of a
freestanding 15 nm silicon nitride film. The settings of the FIB caused
it to strip most of the gold while leaving a fine and irregular silicon
nitride mesh. As the mesh is partially transparent to EUV radiation,
this yields a sample that has a complicated pattern of transmission
levels. Furthermore, the sample did not contain holographic reference
apertures.

Similar to the measurement of the holography sample, we are able
to obtain monochromatic interference patterns for several wavelengths
through an FTS scan. In this case, each time step of the FTS scan con-
sists of a 4 second exposure and two shorter ones. This lead to a 7 sec-
ond measurement time per time step and a total measurement time
of 50 minutes. As an example, Fig. 27(c) shows the amplitude and
phase of the DSI pattern obtained for the 25th harmonic at 34 nm.
In this case, the spectral resolution was 81 THz, yielding an effective
bandwidth of 1/109 at 34 nm wavelength.

For the reconstruction, the initial object support was now retrieved
from the autocorrelation of the sample. This provides a larger initial
support and eliminates the need for a fine determination of the offset
phase. We did perform a new shear optimization, as the experimen-
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Figure 27: Results obtained for a complex ‘griffin’ sample without holo-
graphic references. (a) SEM image of the sample as described
in section 5.4.3. (b) DSI reconstruction of the sample at 34 nm
wavelength, shown on a linear colorscale. (c) Measured ampli-
tude (logarithmic false color) and phase (gray) of the DSI pattern
used to obtain (b).

tal geometry changed slightly in this measurement. With the optimal
shear, we perform 2100 DSI iterations combined with 75% ER and
25% HIO, using shrinkwrap every 75 iterations. The reconstruction
is finished using 1400 DSI iterations combined with 90% ER and 10%
HIO, using shrinkwrap every 25 iterations. During the full reconstruc-
tion, α is ramped down smoothly from 1000 to 10. The final result is
shown in Fig. 27(b). By calculating the phase-retrieval transfer func-
tion, we find that the final result has a resolution of approximately
0.27 µm. This resolution corresponds to the diffraction limit of the
captured data. Comparing the SEM and DSI images, it is clear that
DSI is able to reconstruct the full complexity of the sample including
the partial transmission of the silicon nitride mesh. This demonstrates
that DSI is a promising technique to image complex isolated samples.

5.5 conclusions

In conclusion, we have developed the method of diffractive shear
imaging, in which the full electric field of a diffraction pattern is re-
constructed based on the measurement of a single sheared diffraction
pattern. Comparing the algorithm to standard phase retrieval meth-
ods for traditional CDI, we find that our method consistently yields
more accurate results. In addition, the phase retrieval process con-
verges slightly faster than traditional approaches. As DSI signals can
be easily measured using spatially-resolved Fourier-transform spec-
troscopy, this approach is ideally suited for multi-wavelength coher-
ent diffractive imaging [142]. In particular, this approach is interest-
ing for CDI using high-harmonic generation sources, which produce
a broad range of narrowband harmonics at extreme ultraviolet wave-
lengths. We have demonstrated high-resolution microscopy on two
different samples using several high-harmonics at wavelengths be-
tween 28 and 35 nm. There are several possible extensions which may
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lead to an even more versatile imaging technique. For example, rota-
tion of the sample enables the measurement of shear interferometry
signals at different effective shears. A set of these measurements can
greatly enhance the image retrieval, and reduce the need for a well-
defined object support. Furthermore, combining diffractive shear in-
terferometry with ptychographic techniques can lead to a greater field
of view while still preserving spectral sensitivity.
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E X T R E M E U LT R AV I O L E T L E N S L E S S I M A G I N G
W I T H O U T O B J E C T S U P P O RT T H R O U G H
R O TAT I O N A L D I V E R S I T Y I N D I F F R A C T I V E
S H E A R I N G I N T E R F E R O M E T RY

6.1 abstract

We report on a method that allows microscopic image reconstruc-
tion from extreme-ultraviolet diffraction patterns without the need
for object support constraints or other prior knowledge about the
object structure. This is achieved by introducing additional diversity
through rotation of an object in a rotationally asymmetric probe beam,
produced by the spatial interference between two phase-coherent high-
harmonic beams. With this rotational diffractive shearing interferom-
etry method, we demonstrate robust image reconstruction of micro-
scopic objects at wavelengths around 30 nm, using images recorded
at only three to five different object rotations.

This chapter was published as the following paper: A. C. C. de Beurs, X. Liu, G. S. M.
Jansen, A. P. Konijnenberg, W. M. J. Coene, K. S. E. Eikema, and S. Witte, Extreme
ultraviolet lensless imaging without object support through rotational diversity in diffractive
shearing interferometry, Opt. Express 28, 5257-5266 (2020 )
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6.2 introduction

In recent years, coherent diffractive imaging (CDI) has proved to be
a versatile imaging technique with many applications, such as high-
resolution imaging using X-ray and extreme ultraviolet (XUV) [5, 40,
130, 131] as well as coherent beams of electrons [30] as illumination.
High harmonic generation (HHG) is a process that enabled the de-
velopment of tabletop sources generating a broad harmonic spec-
trum of spatially coherent XUV light [146]. Using these sources re-
cently sub-wavelength resolution has been achieved [46]. The broad
bandwidth of HHG sources enables imaging over wide wavelength
spans throughout the extreme ultraviolet and soft-X-ray ranges. Re-
cently we have demonstrated multi-wavelength CDI based on Fourier-
transform spectroscopy [142, 147], and various promising spectrally
resolved imaging results have been reported [58, 148].

In CDI, the exit wave of an object is reconstructed from a mea-
sured diffraction intensity pattern. In the far-field limit, the diffracted
electric field corresponds to the Fourier-transform of the exit wave.
Therefore, a reconstruction of this exit wave can be obtained by an in-
verse Fourier-transform of this diffracted electric field. The challenge
in CDI measurements is that typically only the squared amplitude
of this electric field is measured. To reconstruct the exit wave, the
phase of the electric field at the detector plane needs to be retrieved
using iterative methods [20, 79]. In the single-shot implementation
of CDI, such algorithms rely on additional information, which often
means knowledge of the object support. Finding a good estimate of
such a support is often difficult, and can be solved in a number of
ways: By using low resolution microscopy technique, such as optical
microscopy [79] or Fourier-transform holography [135]. Another com-
monly used technique is shrinkwrap [80], where the object support
is adaptively refined from a loose starting guess of the support. How-
ever, for objects with non-sharp edges, shrinkwrap-based algorithms
require the user to make a choice about the threshold value at which
to define the support boundary. Many recent developments have been
driven by ptychography [21, 58, 134]. Ptychography uses transverse
scanning of a spatially confined probe beam, while maintaining par-
tial overlap between adjacent scan positions. This approach intro-
duces additional translational measurement diversity which strongly
constrains the exit wave solution. Ptychographic methods remove the
need for an object support and the associated prior object knowledge,
and simultaneously provide a reconstruction of the probe beam [134],
but it does come at the cost of a strongly increased number of mea-
surements.

In this paper, we present a novel approach to CDI that enables
high-resolution imaging without the need for an object support in the
reconstruction algorithm, using only a limited number of measure-
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ments with a rotating interference pattern as the probe. Our approach
is based on the diffractive shearing interferometry (DSI) approach
which allows wavelength-resolved CDI. For our present application
we use XUV radiation generated by HHG [129]. In DSI, the interfer-
ence between two sheared diffraction patterns is measured through
spatially resolved Fourier-transform spectroscopy (FTS) [147]. Effec-
tively, this provides a measure of the phase gradient in the direction
of the shear[140]. We now extend this approach by measuring mul-
tiple shear directions. In analogy to ptychography, these multiple
measurements provide increased measurement diversity since our
interferometric illumination is rotationally asymmetric. A phase re-
trieval approach that rotates an asymmetric illumination was earlier
suggested by Wang et al. [149], and we recently explored the concept
of interferometric probe ptychography in detail for visible light ap-
plications [150]. Shearing interferometry methods for phase imaging
with visible light [141], deep-UV [151] and X-rays [152] have also been
reported. Here we show that the obtained diffraction information is
sufficient to accurately reconstruct an object image without the need
for accurate knowledge of an object support. The only requirements
are 1) that the diffraction pattern is sufficiently sampled, meaning
that the object is fully contained within the field of view, and 2) that
the illumination is smooth across the object (as is the case for CDI in
general). The experimental results are further supported by numeri-
cal simulations, in which the influence of the number of orientations,
the relative magnitude of the shear and the signal-to-noise ratio are
investigated.

6.3 rotational diffractive shearing interferometry

The measurement concept is shown in Fig. 28. An object is illumi-
nated by a pair of broadband noncollinear HHG beams, which are
produced using phase-locked pairs of intense driving laser pulses [129].
The noncollinear geometry gives rise to a coherent, spatially sheared
pair of diffraction patterns at a camera placed in the far field. A series
of far-field diffraction patterns is recorded as a function of the time
delay between the HHG pulses. The combination of such sheared il-
lumination with an FTS scan enables spectrally resolved diffractive
imaging for the different harmonic wavelengths through diffractive
shearing interferometry (DSI) [147]. Note that in the direction oppo-
site to the shearing direction, extra support information is still re-
quired. To remove the need for such support information, the object
is rotated and DSI diffraction data is recorded for a series of object
angles, while the shear between the two beams remains fixed. In this
section, this rotational DSI approach is explained in detail, and the
phase retrieval algorithm required for image reconstruction is out-
lined.
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Figure 28: Two mutually delayed, identical XUV beams are incident on our
sample in a non-collinear geometry. The signal measured on the
camera is the interference pattern between two laterally sheared
diffraction patterns. A time delay (FTS) scan is recorded for a
range of sample rotations along angle θ, which introduces mea-
surement diversity because of the directed interference in the illu-
mination. The top left inset depicts how the relative shear vector
dk changes in k-space upon sample rotation. The amplitude of
dk is exaggerated for clarity. The bottom right inset shows a typ-
ical HHG spectrum retrieved from an FTS scan.

6.3.1 Diffractive Shearing interferometry

With DSI combined with FTS, it is possible to recover two identical
but laterally sheared monochromatic diffraction-plane electric fields
from their interference [147]. FTS scans provide (after Fourier trans-
formation with respect to the time delay between the two pulses) such
a signal resolved for each wavelength of the light source:

M(k) = E(k+dk)E(k−dk)∗

= A(k+dk)A(k−dk) exp{i(Φ(k+dk) −Φ(k−dk)]},
(70)

where the measured signal M(k) corresponds to the product of the
diffracted electric field E(k+dk) and its complex conjugate with op-
posite shear E(k−dk)∗. A(k) is the amplitude of the electric field of
a single beam at the camera and Φ(k) is the phase of the electric field,
k are the camera plane coordinates and 2dk is the combined lateral
shear between the two beams. Note that bold-font symbols are used
to indicate vectors. As can be seen from Eq. 70, the retrieved diffrac-
tion data does not directly correspond to the far-field diffraction pat-
tern of the object, as the complex product between the two beams is
measured instead of the intensity. An advantage of this measurement
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is that the complex phase term provides information about the spatial
phase derivative along the direction of the shear between the beams.

Starting from M(k) it is possible to reconstruct the full complex
far-field electric field of a single illumination beam, which is related
to the object exit wave by a spatial Fourier-transform. This can be
achieved by using an iterative phase retrieval algorithm [20, 144],
which combines a finite support constraint with a camera space elec-
tric field update that takes into account the sheared geometry:

En+1(k) =(1−β)En(k)

+
β

2

[
M(k−dk)En(k− 2dk)

|En(k− 2dk)|2 +α2
+
M∗(k+dk)En(k+ 2dk)

|En(k+ 2dk)|2 +α2

]
,

(71)

where En is the nth update step of the electric field estimate, β is a
feedback parameter with a value close to unity that prevents ampli-
tude overshooting, and α is a regularization constant to avoid divi-
sion by zero.

6.3.2 Rotational diffractive shearing interferometry

As shown in Fig. 28, the rotational symmetry that would be present
for single-beam illumination is broken by the fixed shear direction
in the noncollinear double-beam illumination. Therefore, rotating the
object around the average beam axis results in a qualitatively differ-
ent diffraction pattern at the detector, as the individual diffraction
patterns rotate but the interference direction remains fixed. Measure-
ments at multiple rotation angles therefore provide increased mea-
surement diversity. This additional information forms the basis for
a phase retrieval algorithm that does not require support constraints
or other prior sample-plane knowledge. Instead, it suffices to impose
a constraint that requires the single-beam electric fields measured at
different shear angles, as retrieved from a DSI procedure, to be iden-
tical. Because of the experimental challenge involved in rotating the
shear direction between two HHG beams, we choose to rotate the ob-
ject around an axis given by the average beam direction (Fig. 28). A
series of DSI measurements is then performed as a function of this
rotation angle. After the measurement, the resulting datasets are nu-
merically rotated so that effectively the respective complex fields are
acquired at different orientations of the object relative to a common
orientation. This procedure is equivalent to the measurement of DSI
patterns with a rotating shear. To accurately perform this numerical
rotation of complex field data sampled on a square grid, a method
is used that synthesises rotations by using a set of three shear oper-
ations [153]. This rotated data forms the starting point for an aug-
mented DSI algorithm, which begins with a starting guess for the
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unsheared electric field E0,j(k) for each measurement j at shear angle
θj. The unsheared electric fields are then updated using the standard
DSI camera space update [147], but now for each angle θj:

En+1,j(k) = (1−β)En(k)

+
β

2

[
Mj(k−dkj)En(k− 2dkj)

|En(k− 2dkj)|2 +α2
+
M∗j (k+dkj)En(k+ 2dkj)

|En(k+ 2dkj)|2 +α2

]
,

(72)

where Mj(k) is the measured signal at θj ,En,j(k) is the current field
reconstruction and at that angle. Note that we refer to our camera-
space coordinates as k, since the camera plane takes the role of recip-
rocal space in our measurements. After each update, the field recon-
structions in the object plane for all angles are averaged to obtain the
field estimate for the next iteration:

En+1(r) = 〈En+1,j(r)〉 (73)

While the algorithm typically converges for both simulated and ex-
perimental data, it was observed that on several occasions the con-
vergence stagnated in a local minimum. A probable cause for this
stagnation is the presence of a possible relative phase shift between
the sheared diffraction patterns retrieved at different angles, which
can lead to errors in the field average in Eq. 73. This relative phase
offset is challenging to retrieve from the iterative procedure directly.
Therefore, to aid reconstruction and further improve the algorithm
convergence properties we instead apply an additional constraint in
the averaging step, typically after every 40 iterations:

En+1(r) = γ〈
∣∣En+1,j(r)

∣∣〉+ (1− γ)En(r) (74)

This constraint has the effect of damping object phase variations, and
is therefore similar to a positivity constraint. However, it is not as
strict as a true positivity constraint because of the introduction of the
relaxation parameter γ. The value of γ is typically around 0.5.

6.4 numerical simulations of rotational dsi

To systematically investigate how the quality of the reconstructions
depends on the number of measurements at different rotation angles,
we have performed a series of numerical simulations. The results of
these simulations is shown in Fig. 29. Starting out from a test image
(Fig. 29(a)), we simulate multiple DSI patterns for a range of different
shear vector angles. In the simulations, the angle of the shear vector
is rotated instead of the object, so that numerical object rotation of
the diffraction data is not needed. Care is taken to simulate the far-
field DSI patterns with a signal-to-noise ratio (SNR) comparable to
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Figure 29: Numerical simulations of the algorithm performance as a func-
tion of number of included measurement angles. (a) Intensity im-
age of the simulated object (a flat phase is assumed) (b, c) Far-
field DSI intensity (b) and phase (c) pattern as they would be
recorded in an experiment. (d-g) Reconstructed images of the ob-
ject when including data respectively from two, three, four and
five measurements recorded at different angles . Each of these im-
ages is the average of 10 independent reconstructions. (h) Typical
result for a single reconstruction, using diffraction signals at five
different shear angles. The colorbar bar right of (h) applies to all
intensity images of the object.

our experimental data, which will be discussed in section 6.5. The
intensity and phase of a typical simulated DSI pattern are shown in
Figs. 29(b,c). We typically choose the magnitude of the shear to be
around 5 pixels, which is slightly larger than the typical speckle size
of the diffraction patters, as this was previously found to give the best
DSI reconstructions [147]. A series of DSI patterns is generated with
the shear rotated to angles of 0

◦, 10
◦, 15

◦, 80
◦ and 90

◦, respectively.
The same angles were used to obtain the experimental results, which
will be discussed below. Reconstructions are then performed using
subsets of these DSI patterns, for an increasing number of angles
ranging from two to five. These subsets always included the 0

◦ and
90
◦ datasets, because this pair introduces the largest diversity due to

the orthogonal shears. The other angles were selected randomly in
each subset. For each of these subsets, ten independent reconstruc-
tions were performed using randomized starting field guesses and
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shear orientations. Of these ten reconstructions, the average is then
taken as the overall reconstruction result for the subset correspond-
ing to that particular number of shear angles. These averaged recon-
struction results are shown in Figs. 29(d-g). In these reconstructions,
the total number of camera update steps (Eq. 72) was kept constant.

It was found that when using only two shear angles, convergence
was not guaranteed, and the reconstruction quality varied as a func-
tion of both the direction of the shear and the starting guess of the
electric field. In the cases for which the algorithm did converge, it
would often converge to a solution in a step-like manner after show-
ing no visible improvement for many iterations, as illustrated in
Fig. 30(a). Figure 30 shows the normalised mean square error (NMSE)
[154] as a function of the number of iterations. This NMSE is given
by the expression:

Error =

√√√√∑k,j

∣∣Mj(k) −Mrec,j(k)
∣∣2∑

k,j

∣∣Mrec,j(k)
∣∣2 (75)

where Mrec,j and Mj are the reconstructed and measured interfer-
ence terms, respectively. For the simulated datasets consisting of DSI
patterns for three to five shear angles, the algorithm reliably con-
verged to a clearly recognizable object image. From the averaged
data (Figs. 29(e-g)), it does become clear that there is some remain-
ing variability in the exact position of the object in the transverse
plane. This effect is significant for three angles, but strongly reduces
for four and five angles. For comparison, a single (non-averaged) re-
construction result when taking five angles into account is displayed
in Fig. 29(h). This improved convergence behaviour is also apparent
in Fig. 30(b), which shows the NMSE for a reconstruction including
five angles. Compared to the two-angle reconstruction, convergence
is much faster and less erratic, and proceeds in a nearly monotonous
fashion. Note that the periodic spikes in the NMSE for the five-angle
reconstruction stem from the application of the update constraint
Eq. 74 every 40th iteration. From the reconstructed images and the
error metric, the five-angle case is found to converge after just 70-100

iterations, after which the error metric only shows such periodic be-
haviour due to the regular update constraint application discussed
above. In contrast, the spiking behaviour in the two-angle NMSE is
irregular and cannot fully be explained by this constraint application.

6.5 experimental demonstration of rotational dsi

6.5.1 Setup and measurement procedure for DSI with a HHG source

To experimentally demonstrate the concept of rotational diversity in
DSI, a series of measurements was performed in an XUV lensless
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a) b)

Figure 30: Estimation of convergence, using the normalised mean square
error metric (Eq. 75) as a function of the number of iterations for
a simulation with (a) two and (b) five diffraction patterns with
varying shear-object orientations. The insets show reconstructed
images after different amounts of iterations.

imaging geometry. The XUV radiation is produced by focusing 1 mJ,
25 fs laser pulses at a central wavelength of 800 nm from an optical
parametric chirped pulse amplifier into a jet of Argon gas. The beam
is focused with an f = 25 cm plano-convex lens. The gas jet is 1 mm
wide, and produced by a pulsed nozzle backed by up to 8 bar of
Argon that ejects gas into a metal tube to constrain the flow. The laser
intersects the jet through small holes in the side of the metal tube.
The repetition rate of the laser system is 300 Hz. To enable spectrally
resolved imaging we use an FTS-approach. A coherent pair of HHG
pulses is produced by two phase-stable driving laser pulses, which
each focus in a separate location inside the gas jet but interfere at the
object location. Further details of this method are given in previous
work [129, 147]. A typical HHG spectrum as used in this experiment
is shown in Fig. 28.

The object under study is a transmission sample, representing a
map of the water ways in the city of Amsterdam, manufactured using
focused ion beam milling. The object substrate consists of a freestand-
ing 50 nm thick silicon nitride film, coated on both sides with 70 nm
of gold. A scanning electron microscope (SEM) image of the object is
shown in Fig. 31(a). In the black areas in this image, the film was fully
milled through, while in some parts the material was only partially
removed, so that the object should appear as a ’grayscale’ intensity
image under XUV exposure.

The sample is placed at a distance of 18 cm from the detector (An-
dor Ikon-L, 2048×2048 pixels, 13.5 µm pixel size). The lateral shear
between the two diffraction patterns at the detector plane is set to
134 µm, corresponding to about 10 pixels and an angle of 67 µrad.
The rotation of the sample with respect to the shear direction (an-
gle θ in Fig. 28) is controlled by a piezo-driven rotation stage. FTS
scans were performed for a series of angles, being 0

◦ , 10
◦, 15

◦, 80
◦

and 90
◦, respectively. These particular angles were selected to min-

imize the error in the numerical rotation of the diffraction patterns.
For the FTS scan at 0

◦, a time scan of 6.2 fs is recorded in steps
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of 34.4 attoseconds. These scan parameters correspond to a Nyquist-
sampled spectral range of 14.5 PHz sampled at a frequency spacing
of 164 THz. For the measurements at the other angles, a time scan
of 6.3 fs was recorded in slightly larger time steps of 42.2 attosec-
onds, which results in a similar frequency spacing but at a somewhat
smaller spectral range of 11.9 PHz. Each diffraction pattern in the
FTS scans consists of set of exposures of 10 s, 2 s and 0.5 s, which are
numerically merged into one image with increased dynamic range.
We emphasize that the large number of images recorded in this mea-
surement is specific for our Fourier-transform approach to diffractive
imaging [142], and provides diffraction patterns for all wavelengths in
the HHG source spectrum simultaneously. When instead using spec-
tral filtering before the sample, the rotational DSI approach presented
here in principle only requires a two to four recordings at different
phase steps for each angle, which can be obtained in a total measure-
ment time of a few minutes.

6.5.2 Measurement results and rotational DSI reconstructions

DSI signals at a wavelength of 31 nm as obtained from the FTS scan
are shown in Fig. 31(b-g). From these diffraction patterns, object re-
constructions are performed using the rotational DSI procedure de-
scribed in section 6.3.2. Reconstructions are attempted using the data
from a varying number of angles ranging from two to five, similar to
what was done for the simulations described in the previous section.
For all reconstructions, the total number of algorithm iterations was
kept fixed at 3000 for all reconstructions.

For the experimental data, very similar convergence behaviour was
observed compared to the simulations. When using two angles, the
algorithm generally did not converge reliably. When including data
from three to five angles, convergence was much more robust and
proceeded in a more monotonous fashion. The results of these recon-
structions when including three, four and five angles are displayed
in Figs. 31(h-j), respectively. For the three- and four-angle reconstruc-
tions, the quality of the results was consistently good if a sufficiently
large angular range (i.e. 0-90

◦) is included. In all reconstructions, the
estimated resolution is 300 nm, based on the size of the smallest re-
solved features. This resolution matches well with the highest spatial
frequency that was detected above the noise level. When comparing
the reconstructions for the different number of included angles, we
find that the resolution is similar between all reconstructions. The re-
constructed image for five angles does show slightly sharper edges
with less residual ripples in most parts of the image, but a consistent
and significant resolution improvement cannot be claimed. Slight im-
provements can also be seen in the contrast of the images when in-
cluding more angles. This mainly appears as a more homogeneous
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Figure 31: Object reconstructions from experimental data using rotational
DSI at a wavelength of 31 nm. a) SEM image of the transmission
sample. b,c) Intensity (log-scale) and phase of the diffraction pat-
tern at 31 nm wavelength, obtained from the FTS scan at 0 degree
angle. d-g) Diffraction intensity (log-scale) measured at 10, 15, 80

and 90 degree sample orientation. h-j) Object images obtained
from the DSI reconstruction when including measurements at
three, four and five different angles, respectively. k) Close-up of
the SEM image highlighting a small contamination that moved
upon rotation. l) Close-up of the reconstructed images at sample
orientations at 0

◦ (top left),10
◦, 15

◦ and 90
◦ (bottom right), show-

ing how the contamination is reconstructed differently at these
different angles.

intensity distribution in the larger spaces (both light and dark), as
well as in a more accurate representation of the partially transmitting
areas. From these results we conclude that the main improvement in
diversity from the rotational DSI approach is reached upon inclusion
of data from at least three angles, and that adding data taken at more
angles only results in moderate further improvements.

A noteworthy aspect in the retrieved object images, is that the al-
gorithm is robust against some variation in the actual object upon
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rotation. It was found that the fabricated sample contained a small
contamination that was loosely attached to an edge of a larger open
area, and that this feature changed its orientation as the sample was
rotated over 90

◦. An zoomed-in SEM image showing this contamina-
tion is displayed in Fig. 31(k). The rotational DSI algorithm calculates
an average field estimate in each update step. Nevertheless, when the
final field estimate is calculated using the averaged phase combined
with the diffraction intensity from a specific rotation angle, images are
obtained that show variations in the location of the contamination, in
a way that matched the expectation for how this feature would move
upon rotation when considering gravity. Parts of the reconstructions
for 0

◦, 10
◦, 15

◦e and 90
◦ highlighting this contamination are shown in

Figs. 31(l). It should however be noted that, although the reconstruc-
tion is robust against real object variations between measurements at
different angles, the presence of such changes does violate a basic
assumption of the algorithm. Although the contamination observed
here was too small a detail to limit reconstruction quality, the robust-
ness to such variations is still a subject of further study.

6.6 conclusion

We have demonstrated that using rotational diversity in combination
with an asymmetric probe beam enables CDI image reconstruction
without prior knowledge about the object support, other than that
the object is contained within the imaging field-of-view. We have ex-
perimentally verified this concept, using the DSI approach that we de-
veloped earlier, in which interference between two coherent extreme-
ultraviolet beams results in the asymmetric probe beam structure. We
find that, although in principle the concept works with diffraction
patterns recorded at only two angles, the inclusion of data for up
to five different angles results in improved image quality and more
robust reconstruction. The developed method provides a convenient
way of relaxing support constraint requirements and/or other forms
of prior knowledge in CDI, and enables robust reconstruction using
only a limited number of measured diffraction patterns.
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7
A P I E : A N A N G L E C A L I B R AT I O N A L G O R I T H M F O R
R E F L E C T I O N P T Y C H O G R A P H Y

7.1 abstract

Reflection ptychography is a lensfree microscopy technique partic-
ularly promising in regions of the electromagnetic spectrum, where
imaging optics are inefficient or not available. This is the case in table-
top extreme ultraviolet microscopy and grazing incidence small angle
x-ray scattering experiments. Combining such experimental configu-
rations with ptychography requires accurate knowledge of the rela-
tive tilt between the sample and the detector in non-coplanar scat-
tering geometries. Here, we describe an algorithm for tilt estimation
in reflection ptychography. The method is verified experimentally, en-
abling sample tilt determination within a fraction of a degree. Further-
more, the angle-estimation uncertainty and reconstruction quality are
studied for both smooth and highly structured beams.

This chapter was published as the following paper: Anne de Beurs, Lars Loetgering,
Milan Herczog, Mengqi Du, Kjeld S. E. Eikema, and Stefan Witte, aPIE: an angle
calibration algorithm for reflection ptychography, Opt. Express 28, 5257-5266 (2020 )

97



98 apie : an angle calibration algorithm for reflection ptychography

7.2 introduction

Ptychography is a diffractive imaging technique that enables simul-
taneous quantitative phase microscopy and wavefront sensing [84].
Instead of producing a direct image of a sample of interest on a de-
tector, a series of diffraction intensities is recorded while a sample
is laterally scanned through a focused beam. The recorded data is
inverted via iterative phase retrieval algorithms, resulting in a decon-
volution of sample and illumination contributions in the observed
signal [22, 134]. Ptychography has become a popular technique for
extreme ultraviolet, x-ray, and electron microscopy, where the lensless
experimental geometry dispenses with the need for high-resolution
imaging optics [29, 155, 156]. Moreover it has been used for visible
light label free quantitative phase microscopy [157, 158], near-infrared
wavefront sensing [23], and terahertz imaging [32]. Throughout the
past decade the experimental robustness of ptychography has been
improved by means of various self-calibration techniques. These in-
clude algorithms for the correction of lateral [159, 160] as well as axial
[25, 161] position errors, wavefront instability [27], and partial coher-
ence [26, 28]. An additional complication arises in reflection-mode
ptychography [162], where the sample and camera are situated in
a non-coplanar geometry. Tilting the sample introduces a nonlinear
coordinate warping in the observed diffraction data, parameterized
by the relative angle between the specimen and the detector [65]. In-
accurate knowledge of this angle results in model mismatch, with
the effect of degraded imaging performance. Here, we report an an-
gle self-calibration algorithm for reflection-mode ptychography. We
demonstrate the method on experimental near-infrared data. In addi-
tion, we investigate the influence of the illumination wavefront shape
on the uncertainty of the retrieved angle.

Far-field diffraction between two mutually tilted planes is given by
[64–66]

ψ̃ (u, v) =
∫∫
ψ
(
x ′,y ′

)
exp

[
−i2π

(
ux ′ + vy ′

)]
dx ′ dy ′, (76)

where x ′,y ′ denote sample (=source) coordinates. The relation be-
tween spatial frequencies u, v and observation coordinates x,y is de-
scribed by the mapping

T : u =
x

λr0
cos θ+

sin θ
λ

[(
1−

x2 + y2

r20

)1/2
− 1

]
, v =

y

λr0
. (77)

where r0 =
√
x2 + y2 + z2 denotes the distance from the sample

plane origin to a point x,y in the observation plane. z is the dis-
tance from the sample plane origin to the observation plane origin.
θ is the angle between the sample surface normal and the optical axis
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Figure 32: Effect of sample tilt on diffraction. (a) Sample and detector in
coplanar detection geometry and perpendicular incidence illu-
mination. (b) Non-coplanar geometry with oblique illumination.
The diffraction pattern in (b) is obtained via nonlinear transfor-
mation T of the diffraction pattern in (a) and vice versa.

(cf. Fig. 32). Equations 76 and 77 assume a small detection numeri-
cal aperture, i.e. x,y � z. For θ 6= 0 the coordinate transformation
distorts the diffraction lobes with increasing distance from the center
coordinate. This is illustrated in Fig. 32, where the observed diffrac-
tion pattern under oblique incidence is equivalent to the diffraction
pattern observed under perpendicular incidence when subjected to
the mapping T .

7.3 backward mapping vs forward mapping

We consider two approaches for numerically transforming a function
from one coordinate system to another (see Fig. S1 of the supplemen-
tary materials). The first method, referred to here as forward mapping,
applies a coordinate transformation to the input (=detector) coordi-
nate grid (x,y) → (u, v) = T (x,y) to find the associated grid points
in output (=spatial frequency) coordinates. Due to the nonlinearity of
the transformation, the output grid exhibits irregular spacings. As
most commonly used FFT methods require uniform grids, the in-
tensity on this warped grid is interpolated onto a regular grid. This
method was previously suggested for use for tilted plane coordinate
correction by Gardner et al. [163]. However, this approach has some
downsides in terms of interpolation: The data points for this method
are not on a rectilinear grid aligned with the coordinate axes, which
excludes the use of fast bivariate interpolation schemes, such as bilin-
ear or bicubic [164, 165]. Alternatives to these bivariate interpolation
methods tend to either compromise accuracy or are much slower in
determining the interpolation weights for neighbouring pixels. Such
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interpolation schemes are no option for our angle correction method
(see below), which needs to embed the interpolation step into each it-
eration of the algorithm. Thus a more performant approach is needed.

An alternative approach to transform the intensities is to substi-
tute x(u, v) and y(u, v) into the measured intensity I(x,y) using the
inverse mapping T−1. The reverse transformation is applied to an
evenly spaced spatial frequency output grid to find the associated
observation coordinates. Next, the intensity function at those detec-
tor points is found by means of interpolation I(xwarped,ywarped) =

I(T−1(uregular, vregular)). Since the data points for this interpolation
step are located on a regular detector pixel grid, this interpolation
step is compatible with bilinear interpolation, which is straightfor-
ward and fast [166]. As repeated transformation and interpolation
steps of the diffraction pattern are required for the angle calibration
procedure reported in this work, a backward mapping approach with
bilinear interpolation is used in this paper. Starting from the forward
transform (see Eq. 77, the following expression for the inverse trans-
formation T−1 was derived (see the supplementary materials in the
appendix B for more details):

T−1 : x =
y

v

λu+ sin(θ)
λ cos(θ)

− ztan(θ), y =
−2vz2

b0 − [b20 − 4az
2]1/2

, (78)

where

a = cos(θ)2v2 −
cos(2θ)
λ2

+ u2 + 2 sin(θ)
u

λ
, (79)

and

b0 = −2z sin(θ)(u+
sin(θ)
λ

). (80)

7.4 algorithm

In its simplest form, ptychography models the wave diffracted by a
sample as the product of an illumination and a sample transmissivity
or reflectivity, depending on the operation mode. The resulting wave
exiting the sample plane is propagated into the observation plane
by application of a suitable diffraction model. This results in an es-
timated wave in the detector plane, which can be updated in such
a way that it complies with the experimental observation [22, 134].
Here, we add an extra step that minimizes the mismatch between
the forward model and the experimental observation with respect to
the a priori unknown specimen tilt angle θ. To this end, we measure
model mismatch by the error metric

e =
∑
u,v

∑
j

∣∣∣Ij,m (u(x,y, θ), v(x,y, θ))) −
∣∣F [ψj (x ′,y ′)]∣∣2∣∣∣ , (81)
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where the summation is over all measured spatial frequencies (u, v)
and scan positions (j), and F denotes two-dimensional Fourier trans-
formation. For energy conservation upon coordinate transformation,
the data is normalised on measured total energy. Note that due to the
non-linearity of the transformation, a Jacobian determinant correc-
tion will be required when operating closer to grazing incidence or
at higher NA. Such a correction is described for tilted plane propaga-
tion with the angular spectrum method in [68]. Our angle estimation
method, summarized in Alg. 1, is a combination of a randomized
search inspired by the Luus-Jakoola (LJ) algorithm [167] and the ex-
tended ptychographic iterative engine (ePIE) [22]. At each iteration,
the measured diffraction intensities are transformed with T−1 for a
test angle θt drawn from a uniform probability distribution (U) of
width 2∆θ and centered around the current estimate θ. As the can-
didate solution approaches the true tilt angle, the model mismatch
in Eq. 81 decreases. Therefore, if the error et for the test angle θt is
lower than the error c · e for the previous angle estimate θ, the lat-
ter will be replaced by the former. We added an additional factor,
c = 0.999, to make the comparison between the test angle error and
the previously estimated angle more robust. At every iteration of the
algorithm ∆θ is linearly contracted to narrow down the search space.
Next, inspired by the approach of mPIE [91], a momentum accelera-
tion term vj is added to the angle to speed up the rate of convergence.
This momentum term is initialized at zero, and gets updated at the
end of every iteration: vj = (θupdate − θ) + η · vj−1, where η = 0.7 is
a friction term. At the end of each loop the angle estimate is updated
with the following momentum update step θ = θupdate + vj. To test
our angle calibration method in experiment, a series of ptychographic
measurements were recorded in a tilted-plane reflection geometry us-
ing a USAF (Thorlabs R3L1S4P) resolution test target. The experi-
mental setup is shown in Fig. 33. Illumination around a wavelength
of 708.8 nm was generated by spectrally limiting a super continuum
source by means of short pass (SP1000) and long pass (LP700) filters,
and finally by selecting a narrow wavelength band with an acousto-
optic tunable (AOTF) filter (∆λ = 0.6 nm). The sample and detector
were mounted on two concentric rotation stages, enabling control of
the tilt angle θ between the incident beam and the specimen’s surface
normal. Using this setup 20 data sets were recorded at a tilt angle
of 43± 1◦, which was triangulated from the setup geometry. In half
of these measurements a focused top-hat beam was used, while a
structured beam was used in the other half. The beam structuring
was achieved by means of a scotch tape. Each data set consists of
152 diffraction patterns recorded on a CCD camera (AVT GT3400, 14

bit, 3384 x 2704 pixels) at a sample-detector distance of 71.4 mm. The
linear overlap ratio in these scans was 87%. Reconstructions were
executed on a NVIDIA Titan RTX GPU. Reconstructions in this paper
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Algorithm 1 Angle calibration ptychographic iterative engine (aPIE)
based on Luus-Jaakola algorithm

1: procedure aPIE(P, O, θ)
2: v0 = 0 . initialize momentum
3: c = 0.999
4: for m← 1 to n do . n: number if iterations
5: θt ← θ+ ξ, ξ ∈ U [−∆θ,∆θ] . draw θt random
6: (P,O, e, )← ePIE (P,O, θ)
7: (Pt,Ot, et)← ePIE (P,O, θt)
8: if et < c · e then
9: vj = (θ− θt) + η · vj−1 . update momentum

10: (θ,P,O, e)←
(
θt + vj,Pt,Ot, et

)
11: else
12: vj = η · vj−1
13: (θ,P,O, e)←

(
θ+ vj,P,O, e

)
14: end if
15: ∆θ← (1−m/n) ·∆θmax . contract search interval
16: end for
17: return P,O, θ
18: end procedure

Figure 33: Experimental setup. A supercontinuum source is spectrally lim-
ited via short pass (SP1000) and long pass (LP700) filters to a
wavelength range of 700 nm to 1000 nm. The beam is linearly
polarized using polarization beam splitters (PBS). A narrow spec-
tral band (∆λ = 0.6 nm) is selected by means of an acousto-optic
tunable filter (AOTF). The beam is expanded through lenses L1

(f1 = 25 mm) and L2 (f2 = 300 mm), and modulated through
pinholes PH1 (empty pinhole) or PH2 (pinhole with a scotch tape
diffuser). Finally the pinhole is imaged by L3 (f5 = 500 mm) onto
the sample. The sample and detector are mounted on concentric
rotation stages (dashed lines), permitting flexible control in the
tilt angle θ between the sample normal and the optical axis.
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Figure 34: (a) Comparison of the standard deviation of the estimated angle
for smooth (green) and structured (blue) illumination. The solid
lines indicate the average tilt angle estimate, while the shaded
areas indicate the region within ±1 standard deviation (aver-
aged over 10 measurements) from the mean. (b) Convergence
behaviour for varying initial tilt angle θ guesses. The green
lines (with round markers) indicate smooth illumination and the
blue lines indicate structured illumination. The results shown in
(a) and (b) are preprocessed by 200 iterations of ePIE at the orig-
inal angle estimates before aPIE is started. (c1-c3) Image recon-
structions before (c1), during (c2), and after (c3) convergence of
the angle correction method using structured illumination. Note
that ePIE convergence was already reached for (c1) before the an-
gle correction was initiated. (d,f) Reconstructions of object and
probe, respectively, obtained with a smooth beam. (e,g) Recon-
structions of object and probe, respectively, obtained with a struc-
tured beam.



104 apie : an angle calibration algorithm for reflection ptychography

have been preprocessed by 200 iterations of ePIE, before applying 400

iterations of aPIE. Representative reconstructions of the object and the
probe are depicted in Fig. 34 (d,f) for the case of smooth illumination,
and in Fig. 34 (c,e,g) for the case of a structured illumination. Upon
starting angle optimization, the error (Eq. 81) rapidly improves as il-
lustrated in Supplementary Figure 37. The robustness of the angle
calibration of the smooth beam was compared to that of the struc-
tured beam through an estimation of the standard deviation of the
recovered values of the tilt angle θ. The results of this comparison are
shown in Fig. 34(a), where the solid line and shaded areas indicate
the average and standard deviation of the current estimate of θ. The
solid curves were calculated by averaging reconstructions of 10 differ-
ent data sets. It is seen that the standard deviation for the angle esti-
mate is much smaller for the case of the structured beam, indicating
more precise parameter estimation performance. This is also reflected
in the improved object reconstruction quality in Fig. 34(e) (structured)
as compared to Fig. 34(f) (smooth). Next, we tested the robustness of
our method against inaccurate initial tilt angle estimates. A series of
reconstructions were carried out with varying starting values for θ.
The recovered tilt angle θ for these reconstructions as a function of
the number of iterations is shown in Fig. 34(b). It is seen that our an-
gle calibration method retrieved the angle within the aforementioned
uncertainty given by the respective beam profile for initial deviations
as large as 10deg, with a more rapid convergence rate observed for
the structured illumination. Finally the feasibility of a combined cal-
ibration of the detector sample distance z and the tilt angle θ was
investigated. For this purpose, a series of reconstructions was exe-
cuted with varying starting θ-z-estimates the structured beam data.
These reconstructions alternated between 200 iterations of zPIE [25]
and 50 iterations of aPIE for 2500 iterations.The trajectories of these
combined reconstructions through the joint θ-z plane are shown in
Fig. 35, where each colour indicates a single reconstruction with a
different initial guess. These reconstructions converged to a value for
theta of 43.37±0.06 ◦and to a value for z of 71.16± 0.04 mm, where
the uncertainty is a single standard deviation in the final parameter
estimates.

7.5 discussion and conclusion

In this letter we proposed a self-calibration algorithm for estimating
the tilt angle in non coplanar reflection ptychography. The method
was tested experimentally, where it showed robust performance for
an initial estimate range up to 10◦ deviation from the true angle.
We observed empirically in these tests that a structured illumination
helps to reduce the uncertainty in the angle estimate and to improve
the convergence rate of our proposed algorithm. Additionally, we
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Figure 35: Convergence diagram of a combined calibration of both the tilt
angle θ and the sample-detector distance z. The calibration alter-
nates between 50 iterations of aPIE and 200 iterations of zPIE
on experimental data with a structured beam illumination (cf.
Fig. 34f). Each colored trajectory represents the convergence be-
haviour for a different initial estimate starting on the dashed cir-
cles. The reconstructions converged to z = 71.16± 0.04 mm and
θ = 43.37± 0.06◦.

demonstrated that despite of the explicit z-dependency of the under-
lying coordinate transformation, an alternating descent optimization
of the tilt angle and detector-sample distance is feasible, even when
neither parameter is known precisely. In summary, aPIE will improve
the robustness and allow for tilt angle self-calibration in reflection-
mode ptychography.
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A P P E N D I X





A
A P P E N D I X A

a.1 complex real calculus

In many fields of engineering, including the field of coherent diffrac-
tive imaging, Complex-Real (CR) or Wirtinger [97] derivatives are
used for calculating complex derivatives for optimisation algorithms,
often without explicitly stating so. The traditional definition of the
derivative of a complex function f(x) is only uniquely defined if the
value of the limit that defines the derivative, which is given by

d(f(x))

dx
= lim
h→0

f(x+ h) − f(x)

h
, (82)

does not depend on from which direction it approaches zero in the
complex plane. This only holds if the complex function satisfies the
Cauchy-Riemann equations. This condition is not satisfied by many
basic complex functions [96]. However, in CR-calculus a derivative
is defined that is suitable for complex functions that do not satisfy
these conditions by treating the real and imaginary parts of a function
as mutually independent real-valued functions. The CR derivative is
then defined as the sum of the (real-valued) partial derivatives to
these parts. For a complex function f that is a function of its real and
imaginary parts Re and Im,

f(x,y) = Re(x,y) + iIm(x,y), (83)

the CR-derivative can be defined by the following expression (follow-
ing the convention advocated by Kreutz and Delgado [96]),(

δ

δf

)
C<

=
1

2

((
δ

δRe(x, y)

)
− i

(
δ

δIm(x,y))

))
. (84)

CR derivatives have the convenient property that the conjugate func-
tion is, by definition, a fixed point for the derivative to the function
itself, which can simplify calculating the derivatives of absolutes val-
ued functions(such as vector norms), as complicated chain rules are
avoided.(

δ

δf∗

)
CR

=
1

2

((
δ

δRe(f)

)
+ i

(
δ

δ Im(f)

))
(85)(

δ

δf

)
CR

f∗ =

(
δ

δf∗

)
CR

f = 0 (86)

Note that the definition of the CR-derivative is not unique, as it de-
pends on whether you consider the positive or negative direction for
i to be larger.
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The alternative convention, in which more positive i are considered
to be larger, this convention is common in many area’s of engineering
and is given by,(

∂

∂f

)
altCR

=
1

2

((
∂

∂Re(x, y)

)
+ i

(
∂

∂Im(x,y))

))
. (87)

However, the complex-real derivative in this definition does not re-
vert to the real-valued derivative for real-valued functions, as in this
definition, the complex-real derivative of a function to itself is zero.



B
S U P P L E M E N TA RY M AT E R I A L F O R C H A P T E R 7

( A P I E )

b.1 derivation of the inverse transformation

Starting from the forward transformation T (x,y) = (u, v) of Eq. 77 in
the main text, which maps detector space coordinates (x,y) to spatial
frequencies (u, v) of the object, we derive the inverse transformation
T−1(u, v) = (x,y). Spatial frequencies associated with x are given by
(see Eq. 77 of the main text)

u =
x cos(θ)
λr0

+
sin(θ)
λ

[(
1−

x2 + y2

r20

)1/2
− 1

]
(88)

=
x cos(θ)
λr0

+
sin(θ)
λ

(
z

r0
− 1

)
(89)

=
x cos(θ)
λr0

+
sin(θ)
λr0

(z− r0) , (90)

and spatial frequencies associated with y are given by

v =
y

λr0
. (91)

We can use Eq. 91 to get an expression for r0, which can then be sub-
stituted into Eq. 90 in order to eliminate the dependencies on r0(x,y),

r0 =
y

λv
(92)

u =
v

y

[
x cos(θ) + sin(θ)

(
z−

y

λv

)]
. (93)

The x coordinate can be eliminated from Eq. 93 in the following way,

r20 =
( y
λv

)2
= x2 + y2 + z2 (94)

x = ±
[( y
λv

)2
− y2 − z2

]1/2
(95)

u =
v

y

[
±
[( y
λv

)2
− y2 − z2

]1/2
cos(θ) + sin(θ)

(
z−

y

λv

)]
.

(96)

Then, Eq. 94 is rearranged to isolate the root term,

uy

cos(θ)v
= ±

[( y
λv

)2
− y2 − z2

]1/2
+

sin(θ)
cos(θ)

(
z−

y

λv

)
, (97)
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±
[( y
λv

)2
− y2 − z2

]1/2
=

uy

v cos(θ)
−

sin(θ)
cos(θ)

(
z−

y

λv

)
. (98)

After taking the square of both sides, these terms can be reordered as
a quadratic polynomial in y:

y2

[
1−

(
1

λv

)2
+

(
u

v cos(θ)

)2
+

(
sin(θ)
λv cos(θ)

)2
+ 2

u sin(θ)
λv2 cos2(θ)

]
+

y

[
−2z sin(θ)
v cos2(θ)

(
sin(θ)
λ

+ u

)]
+ z2

(
1+ tan2(θ)

)
= 0. (99)

Next, we multiply both sides of Eq. 99 with v2cos2(θ),

y2
[

cos2(θ)v2 +
− cos(2θ)

λ2
+ u2

+ 2
u sin(θ)
λ

]
+ y
[
− 2vz sin(θ)

(
sin(θ)
λ

+ u

)]
+ v2z2 = 0. (100)

From here, the standard quadratic formula is used to solve for y,

y =
−b± [b2 − 4ac]1/2

2a
, (101)

where,

a = cos2(θ)v2 −
cos(2θ)
λ2

+ u2 + 2 sin(θ)
u

λ
(102)

b = −2vz sin(θ)
(

sin(θ)
λ

+ u

)
= bov (103)

c = v2z2, (104)

in which b0 = b/v is a parameter that is introduced for compactness
of the final expression. From here, Eq. 101 can be rewritten into the
following expression for y,

y =
−b0v± |v|[b20 − 4az

2]1/2

2a
. (105)

Next, the correct sign of the root term of this solution needs to be
determined. From the forward transformation Eq. 91, we see that the
sign of v and y should be the same, as λr0 is positive. This leads to
the following constraint on the signs:

sign(y) = sign

(
−b0v± |v|[b20 − 4az

2]1/2

2a

)
= sign(v) (106)
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Thus, the sign of the numerator times that of the denominator in
Eq. 106 must be identical to the sign of v. In the case that a < 0, the
two terms in the square root add up. The magnitude of the square
root term then becomes larger than b0v, and determines the sign of
the numerator. To match the sign of v, we must choose the ± sign in
Eq. 106 opposite to sign(v).

For a > 0, the terms in the square root are subtracted, and the sign
of the numerator is determined by the −b0v term. This in principle
leaves the choice of the ± sign undetermined. In this case, additional
insight can be gained by considering the limit a → 0, which may
occur for specific parameter combinations. For y to remain finite, the
numerator in Eq. 106 should then also go to zero, which can only
be ensured in the general case if −b0v± |b0v| = 0. From Eq. 103 it
can be seen that b0 can only become positive when u < − sin(θ)/λ.
In the regime where the paraxial approximation is valid, 1/λ � u, v.
Thus, b0 can only become positive for very small values of θ. Note
that sin(θ) > 0, as the measurement geometry restricts θ to values
between 0 and 90 degrees. For such small angles, a is negative as the
− cos(2θ)/λ2 term dominates Eq. 102. Therefore, in the limit of a→ 0,
b0 is negative and we obtain the same sign choice as above.

The remaining case is that of b0 < 0 and a > 0.
Assuming that the solution should be continuously connected to

the case described above for a → 0, the sign choice should remain
such that −b0v± |b0v| = 0, and consequently the sign choice should
again be −sign(v).

Thus, we conclude that the sign choice is the same in all cases, and
we can incorporate it in the expression Eq. 105 through the |v|-term,
resulting in the final expression for y:

y = v
−b0 − [b20 − 4az

2]1/2

2a
. (107)

b.2 ensuring numerical accuracy

When evaluating Eq. 107 numerically, it is important to realize the crit-
ical sensitivity in the ABC-formula to rounding errors when 4ac� b,
in which case the numerator contains a subtraction of two large num-
bers of nearly equal magnitude. We therefore follow the approach
suggested in [168] to rewrite Eq. 107 into an expression that avoids
such numerical instabilities:

y =
−2vz2

b0 − [b20 − 4az
2]1/2

(108)

Finally, an expression for x as a function of u, v and y is obtained by
rearranging Eq. 93:

x =
y

v

λu+ sin(θ)
λcos(θ)

− ztan(θ). (109)
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The inverse transformation for both coordinates is now given by
Eqs. 108 and 109

b.3 illustration of mapping procedures

Forward mapping

Backward mapping

u

v

x

y

x

y

u

v

T

T
-1

(a)

(b)

Measured data point Output grid point

Coordinate mapping
T/T

-1

Figure 36: Illustration of the mapping procedures discussed in the main ar-
ticle, (a) forward mapping, the detector space grid (orange) is
transformed to a warped spatial frequency space grid through a
forward transformation (x,y) → T (x,y)regular = (u, v)warped. The
intensities on a uniformly spaced (u, v) output grid (cyan) are
found through interpolation from the warped spatial frequency
grid that results from the previous operation. (b) Backward map-
ping, The inverse transformation (x,y) → T−1(u, v)regular =

(x,y)warped is applied to a uniform grid in spatial frequency space
to find the associated coordinates in detector space. Then the in-
tensities in those detector space points are approximated through
interpolation from the values measured on the regular detector
grid. These interpolated intensity values are copied to the corre-
sponding u, v grid points.
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b.4 error convergence with and without tilt-angle re-
finement

Figure 37: Comparison of the error convergence (as defined in Eq. 6 in the
main article) between a reconstruction with ePIE (orange) that
is tilt-corrected at a fixed tilt angle estimate of 45

◦, and a recon-
struction in which the tilt-angle is calibrated with aPIE (blue). The
aPIE algorithm is initiated after 200 iterations of ePIE. In this cal-
ibration, the estimate is refined from an initial tilt angle estimate
of 45

◦ to a final estimate of 43.3◦. These reconstructions start from
identical initial estimates for both the probe and the object. The
dataset for these reconstructions was recorded with a structured
beam.
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