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Abstract: Super-resolution multimode fiber imaging provides the means to image samples
quickly with compact and flexible setups finding many applications from biology and medicine
to material science and nanolithography. Typically, fiber-based imaging systems suffer from
low spatial resolution and long measurement times. State-of-the-art computational approaches
can achieve fast super-resolution imaging through a multimode fiber probe but currently rely on
either per-sample optimised priors or large data sets with subsequent long training and image
reconstruction times. This unfortunately hinders any real-time imaging applications. Here we
present an ultimately fast non-iterative algorithm for compressive image reconstruction through a
multimode fiber. The proposed approach helps to avoid many constraints by determining the
prior of the target distribution from a simulated set and solving the under-determined inverse
matrix problem with a mathematical closed-form solution. We have demonstrated theoretical
and experimental evidence for enhanced image quality and sub-diffraction spatial resolution of
the multimode fiber optical system.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Endoscopes play a key role in the examination of deep tissues and imaging in locations, which
are impossible to reach using conventional optical microscopy. As optical fibers offer a vast
range of convenient properties, a broad variety of applications from bioimaging to semiconductor
metrology strive to utilize this technology [1]. Multimode fiber (MMF) imaging provides the
highest information density on the given footprint, which is very promising for endo-microscopy
and possible integration with other fiber-based sensors [2–5]. However, imaging using an
MMF introduces additional challenges, which require advanced computational algorithms like
transmission matrix measurements, compressive ghost imaging and holographic light shaping
[6–8]. In MMF imaging, the same fiber is used to illuminate the sample and capture the signal.
To simplify the optical setup, the total integrated intensity is recorded using a bucket detector
instead of a camera. The light is scrambled while it propagates through an MMF, therefore a
series of randomly varying illumination patterns are produced and projected onto the sample and
an advanced computational algorithm is needed to reconstruct the image by solving a convex
optimization problem to invert this projection process.

Super-resolution compressive MMF imaging increases the detection sensitivity, spatial
resolution, and imaging speed [9–11]. However, the reconstruction process becomes even more
computationally expensive because an under-determined system of equations has to be solved.
Conventionally, images are reconstructed by minimizing the least-squares loss with an additional
regularization term exploiting the sparsity by using an iterative solver [12–16]. Over the last years,
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an increasing number of deep learning based approaches have been developed, outperforming
conventional techniques in terms of image quality and not relying on this sparsity constraint
[17–26]. However, these approaches typically require a large data set of labeled measurements to
train the network, which match the expected samples. Obtaining this labeled data set as well as
these iterative reconstruction procedures contradict the idea of a fast and flexible technique.

In this work, we present a physical-model-based ultimately fast non-iterative algorithm that
successfully retrieves an object function in multimode fiber imaging experiments. We propose
reg. least square linear regression to solve the ill-posed inverse matrix problem and reconstruct
an image with super-resolution. Short reconstruction time is ensured by employing a physical
forward model to simulate the data set and regularization enforces generalization beyond the
simulation. Additionally, the well-known closed form solution (ridge regression) enables fast
and reliable application of our technique.

In section 2 the mathematical background of linear regression and of the physical model is
explained. Then in section 3 the technique is applied in a completely simulated setup section 4
tests its performance in experiments. Lastly, section 5 summarizes the findings.

2. Theory

We use the fact that despite the propagation of light in an MMF is complex and leads to randomly
looking speckle patterns – it’s deterministic and linear [27]. We use a regularization technique
known as ridge regression [28–30]. In the proposed MMF imaging approach, we first construct
the forward model as it’s easier to be measured experimentally, which is extremely important
for practical applications. Then, we develop a computational workflow that inverts the object
function by using ridge regression on the signal, which is predicted by the forward model. Finally,
applying this inverted object function to experimentally measured intensities enables ultimately
fast and non-iterative reconstructions.

2.1. Physical forward model

Our experimental setup for super-resolution compressive imaging is presented in Fig. 1(a) and
consists of a laser source whose beam is transmitted through an MMF and projected into the
camera and on the sample using a 4f -system. Through the excitations of different sets of modes
in the MMF, different intensity patterns are produced on the output facet of the fiber. These
images are projected by two lenses and split by the beamsplitter before reaching the sample or
the camera. The integrated intensity transmitted by the sample is measured by the avalanche
photodiode. The sample is placed between the beamsplitter and avalanche photodiode in the
image plane of the tube lens. Samples are illuminated sequentially with different magnified
images of the output facet of the MMF (speckle patterns), which are also captured by the camera.
One measurement event includes the projection of a single speckle pattern and recording the
total signal from a sample.

The physical forward model can be summarize as a system of linear equations. The process of
projecting different speckle patterns on the sample and measuring the transmitted intensity is
formulated by:

x = Ay, (1)

where y is a sample, x is the integrated intensity measurement and A is the measurement matrix,
which consists of stacked and flattened illumination patterns (captured by the camera). Figure 1(b)
depicts the model graphically.

To reconstruct an unknown image from measurements, the main challenge is to invert the
matrix A. This challenge becomes even more difficult for super-resolution imaging, where no
mathematical well defined inverse exists anymore, because the number of measurements is
smaller than the number of pixels in the sample and therefore A is under-determined. Machine
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(a) Experimental setup (b) Physical forward model

Fig. 1. Illustration of the experimental setup (1a) and its physical forward model (1b).
Different random speckle from the MMF are projected sequentially onto the sample
and camera. The photodiode records the integrated intensity of the transmitted light
through the sample and the camera takes a picture of the speckle pattern, which is
used to construct the measurement matrix 𝐴. This processed is modeled by 𝐴𝑦 = 𝑥

with 𝑦 being the flattened sample image and 𝑥 consist of the integrated intensities for
each speckle pattern. 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 is the number of pixels of the speckle pattern
and 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑖𝑧𝑒 is the number of elements in the data set. Graphics by Alexander
Franzen/ CC BY-NC 3.0
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Fig. 1. Illustration of the experimental setup (1a) and its physical forward model (1b).
Different random speckle from the MMF are projected sequentially onto the sample and
camera. The photodiode records the integrated intensity of the transmitted light through the
sample and the camera takes a picture of the speckle pattern, which is used to construct the
measurement matrix A. This processed is modeled by Ay = x with y being the flattened sample
image and x consist of the integrated intensities for each speckle pattern. width × height is
the number of pixels of the speckle pattern and training size is the number of elements in the
data set. Graphics by Alexander Franzen/ CC BY-NC 3.0

Learning offers an opportunity to utilize knowledge about the sample and the experimental setup
which is learned during the calibration phase to improve the reconstructed images.

Our proposed algorithm is not limited to this specific experimental setup, but instead can be
applied to any linearizable problem. Specifically the extension to complex valued problems is
possible. Hence, it is for example applicable to computational imaging settings like Holography
[31], Tomography [32] or MRI [33].

2.2. Regularized linear regression

Linear regression can be used to fit a theoretical model to a data set composed of labeled
measurements under the assumption of a linear relationship between a set of dependent variables
and a set of explanatory variables. Since the inverted physical forward model y = A−1x represents
such a linear relation, we propose linear regression to find the best left inverse A−1.

We investigate the multidimensional case, where the explanatory variables x ∈ RM (intensity
measurement) and the dependent variables y ∈ RV (flattened sample image) are vectors. We
focus on the super-resolution region with M ≪ V . The linear model y(x; W) = Wx produced
by linear regression is then parameterized by the weight matrix W ∈ RV×M . The loss function
for the optimization consists of the fidelity term Lf , which is used to evaluate how well the
model fits experimentally measured data, and regularization term Lr with the hyperparameter
γ. Linear regression constructs the best linear fit to the series of data points by minimizing the
sum of squared errors (SSE). SSE is the most commonly used loss function for regression, and it
calculates the sum of squared differences between the true and predicted values for each data
point.

Given some data set with N data points {(Xi, Yi)}N
i=0 with X ∈ RM×N and Y ∈ RV×N , the

procedure minimizes the loss

L =
N∑︂
n

∥Yn − WXn∥2
2
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which is composed of the SSE and a regularization term. Increasing regularization parameter γ
reduces the over-fitting to the data set and increase the generalization of the model. To reach the
best performance, the data set must be sufficiently large and contain data points from all relevant
regions of the parameter space to enable the model to generalize well.
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This minimization problem has a closed-form solution, which is calculated by taking the
derivative of L with respect to the weight W and setting it to zero:

∂L
∂W

!
= 0

⇔ 0 = −(Y − WX)XT + γW
⇔ W = YXT (XXT + γI)−1

The chosen regularization parameter γ influences the effective condition number of XXT + γI
and thus ensures the inverse is well-conditioned.

The quality of the reconstructed image y with respect to the true sample image z is quantified
using the Pearson correlation coefficient [34]

r =
∑︁

ziyi − nz̄ȳ
(n − 1)szsy

, (3)

with the number of pixels in the images n, the mean ȳ and standard deviation sy of y and analogous
for z. The correlation coefficient r ranges from -1 to 1, where 0 indicates no reconstruction and
+1 means perfect reconstruction.

3. Simulations

First, we evaluate the performance of the MMF compressive imaging approach with reg. linear
regression on simulated data. Our test samples consist of 28 × 28 pixel images (flattened to 784
integers) from the MNIST [35] data set, which contains 70 000 handwritten digits. This data
is split into a training set of 60 000 images and a test set of 10 000 images. While the linear
regression is performed on the training set, the test set is held back and only used to evaluate
the performance of the algorithm in the final step. The images are flattened and normalized to
mean and standard deviation equal to one. The image size mainly influence the computational
complexity and is not expected to have a direct impact on the performance of the model.

All calculations are performed on a Windows Server 2019 with a AMD Ryzen Threadripper
3970X processor with 32 cores (3693 MHz, 64 logical processors). The total available physical
memory is 128 GB (3200 MHz). The algorithm was implemented using Python [36] with the
packages numpy [37] , plotly [38] and matplotlib [39].

The speckle illumination patterns, which determine the measurement matrix of the physical
forward model, are simulated by first sampling 784 values from a complex Gaussian distribution.
Then, the diffraction limit of the optical system is simulated by applying a low-pass frequency
filter with a cutoff frequency ν to the random field with ν ∈ (0, 1] normalized to half of the spatial
frequency spectrum. Finally, the intensity of the flattened speckle fields form the rows of the
forward model matrix A (see Fig. 1(b)).

The intensity measurements X are simulated by the physical forward model (see Eq. 1) using
the simulated measurement matrix A and the flattened MNIST sample images Y . Then X and
Y of the training set are plugged into the reg. linear regression closed form solution Eq. 3 to
approximate A−1. Finally, A−1 can be used to reconstruct the image from the simulated intensity
measurements of the test set.

A well known iterative method to reconstruct sparse images from compressive sensing
measurements–basis pursuit denoising (BPDN) – is used as a reference. It finds the reconstructed
image y by

min
y

∥y∥1 subject to ∥x − Ay∥2 ≤ σ, (4)

where ∥y∥1 is the l1 norm of vector y and σ is a hyper-parameter for the level of noise. The l1
norm is used here to enforce sparsity in the reconstructed image. Improvements upon BPDN
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would benefit many research directions and technical applications, e.g., silicon electro-optical
sensors [40].

Figure 2 shows the average correlation coefficient r (Eq. 4) of the reconstructed images for
different ν and number of measurements m. The average is calculated over 5 different simulated
measurement matrices. The performance of reg. linear regression (left) and BPDN (right) are
shown for comparison. Any correlation above 90% is highlighted using a colored scale, while
any value below is plotted using gray scale.

where ∥𝑦∥1 is the 𝑙1 norm of vector 𝑦 and 𝜎 is a hyper-parameter for the level of noise. The 𝑙1147
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Fig. 2. Correlation between the reconstructed and true image using reg. linear
regression for different cutoff frequencies a and number of measurements 𝑚 is shown.
The regularization parameter 𝛾 is set to 100 and the training set contains the full 60 000
images. For each a and 𝑚 the shown correlation is the maximum over 5 different
simulated measurement matrices, where the correlation for each matrix is averaged
over 5 reconstructed samples. BPDN is applied to the same 25 testing images for each
a and 𝑚 with 𝜎 = 0.1.
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calibration is performed once per setup and does not contribute to the reconstruction time of an168

individual image. In contrast, BPDN performs the iterative optimization for every reconstructed169

image independently.170

For all parameter combinations depicted in Figure 2, BPDN performed 5 reconstructions in171
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reconstruction of 5 images.173
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Fig. 2. Correlation between the reconstructed and true image using reg. linear regression for
different cutoff frequencies ν and number of measurements m is shown. The regularization
parameter γ is set to 100 and the training set contains the full 60 000 images. For each ν and
m the shown correlation is the maximum over 5 different simulated measurement matrices,
where the correlation for each matrix is averaged over 5 reconstructed samples. BPDN is
applied to the same 25 testing images for each ν and m with σ = 0.1.

The top right corner of the plots clearly exhibits the best performance for both algorithms. There,
the cutoff frequency only affects high spatial frequencies and the number of measurements has the
same order of magnitude as the number of reconstructed pixels making A−1 a well-conditioned
problem. Moving vertically down in the plot means reducing the number of measurements
exponentially, hence exploring the super-resolution regime. Moving horizontally left means
increasing the blurring effect due to diffraction limitations and thus increasing the difficulty to
reconstruct detailed samples.

Reg. linear regression performs much better than the BPDN algorithm, specifically for
super-resolution. It only requires a fraction of the measurements to achieve a comparable
reconstruction result. Furthermore, it also works better for low ν and the performance does not
fall as sharply as for the BPDN algorithm. Additionally, the proposed reg. linear regression
approach is much faster than BPDN, even if including the calibration time. In practice, the
calibration is performed once per setup and does not contribute to the reconstruction time of an
individual image. In contrast, BPDN performs the iterative optimization for every reconstructed
image independently.

For all parameter combinations depicted in Fig. 2, BPDN performed 5 reconstructions in
less than 44 sec, while the proposed approach spend at most 1 sec for the calibration and the
reconstruction of 5 images.

Next, the performance with respect to different number of data points in the training set
is shown in Fig. 3. So far the entire 60 000 samples have been used, but smaller data sets
are generally easier available. As one can see, the performance increases dramatically for the
sample sizes below 1 000, but there is not much improvement beyond that point. Although 1 000
samples seems to be enough to achieve near optimal results, reg. linear regression displays stable
performance when moving to lower sample numbers without any sharp cutoff in performance.
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Fig. 3. Correlation between the reconstructed and true image using reg. linear regression
for different cutoff frequencies a, number of measurements 𝑚 and number of training
samples. The regularization parameter is set to 𝛾 = 100.
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Fig. 4. The reconstruction results from reg. linear regression (reg. LR) and BPDN
are directly compared for different number of measurements 𝑚 and two different
signal-to-noise ratios (SNR), while the cutoff frequency is a = 0.3. In each image, the
correlation with the original sample is given. BPDN uses 𝜎 = 0.1 and 𝜎 = 0.7 for the
30 dB and 10 dB respectively, which give the best reconstruction results in our test.
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Fig. 3. Correlation between the reconstructed and true image using reg. linear regression for
different cutoff frequencies ν, number of measurements m and number of training samples.
The regularization parameter is set to γ = 100.

In the next set of simulations, we tested how stable reg. linear regression behaves with respect
to noise. We assume standard normal distributed noise with different signal-to-noise ratios (SNR).
The noise is added to the simulated intensity measurements X. Since the speckle patterns are
also recorded with noise, a complex noise with the same SNR is added to the patterns before
calculating their intensity. Figure 4 shows the comparison between the reconstructed samples
using reg. linear regression and BPDN at SNR of 30 dB and 10 dB.
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Fig. 4. The reconstruction results from reg. linear regression (reg. LR) and BPDN are
directly compared for different number of measurements m and two different signal-to-noise
ratios (SNR), while the cutoff frequency is ν = 0.3. In each image, the correlation with
the original sample is given. BPDN uses σ = 0.1 and σ = 0.7 for the 30 dB and 10 dB
respectively, which give the best reconstruction results in our test.

The performance of BPDN is much more deteriorated by noise, while reg. linear regression
stays around r ≈ 95% in the large m regime and around r ≈ 80% in the lower m regime. The
lower reconstruction scores of BPDN for the largest m is caused by the reconstruction of noise.
The large number of measurements enable BPDN to reconstruct the measured noise, which is not
part of the ground truth sample and thereby reducing the reconstruction score. However, this
effect vanishes in the super-resolution regime.

The hyper parameter γ is chosen to satisfy the conflicting goals of stabilizing the model while
at the same time being flexible enough for all kinds of different measurements. It could be tuned
to improve the performance of the model. However, the value depends on a lot different quantities
like training set size, noise levels, variety in the data and more. Therefore, it can be difficult
to determine the optimal value from theory alone, but fortunately one can simply test different
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values and compare the performance of the model on the training set. In this work, there was no
fine tuning performed on γ, because this would go beyond the scope of a proof of concept.

4. Experimental validation

In this section the same reconstruction procedure as in section3 is applied to experimentally
recorded speckle illumination patterns and intensity measurements (data from [41,42]). The
measurement matrix is now constructed from the experimental speckle patterns and, just as
before, is used to simulate the training set from the MNIST data. In this way, only the speckle
illumination patterns have to be measured experimentally to fit the least square linear regression
model.

The reconstruction performance is again measured by calculating the correlation coefficient
between the reconstructed and ground truth image, but now using experimentally measured
intensities in the reconstruction process. Because of the experimental prerequisites and noise, the
measured intensities will deviate from the ideal prediction of the physical forward model based
on the previously recorded speckle patterns. Hence, the performance is expected to decrease
compared to section3, because of the mismatch between the simulated training measurements
and the experimental testing measurement. Meanwhile BPDN does not rely on any simulated
training measurements, it is still effected in a similar way, because of the incoherency of the
measurement matrix and the testing intensity measurements.

For the experiment, a handwritten digit from the MNIST testing set is prepared on a microscope
slide using maskless UV photolithography (365 nm) and lift off of sputtered reflective 200-nm-
thick aluminium film. The ground truth is obtained by separately measuring the handwritten digit
with bright-field microscopy and then cropping and normalizing the image to the pre-established
format.

During the experiment 2 000 speckle illumination pattern and measurements with corresponding
intensity measurements were recorded. However, only a random subset with a specified number
of measurements m is selected during the analysis for the reconstruction procedure and different
random selections for a given m are used to evaluate the stability of the algorithm.

Figure 5 shows the averaged reconstruction score for different number of measurements m for
reg. regression and BPDN. Our method clearly excels the peak performance of BPDN for any m.
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Fig. 5. Correlation 𝑟 between the reconstructed and ground truth image using reg. linear
regression and BPDN for different number of measurements 𝑚. The mean and standard
deviation for each 𝑚 are calculated from 50 replications using different speckle patterns
and corresponding intensity measurements from the experiment. The regularization
parameter is set to log10 (𝛾) = 12 and 𝜎 = 0.4. 50 replications are chosen as a trade off
between the certainty of the results and reasonable computation and experimentation
times.
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The stability is also improved by exhibiting smaller standard deviation for medium and large m.
These result testify to the improved performance and robustness of our new algorithm even in
experimental setups. Combined with the increased speed and flexibility of our approach, reg.
linear regression also shows huge benefits in practice.

5. Conclusion

We present the application of reg. linear regression for super-resolution MMF imaging in simulated
and experimental environments. In both cases, we demonstrate improved reconstruction quality
compared to a traditional reconstruction method and improved overall stability and resilience to
noise. Due to the closed form solution approach of reg. linear regression, it also comes with
an astonishing speed-up, because no iterative steps are performed. These results prompt the
exploration of further extensions of this rudimentary approach. Adding an additional loss terms
to enforce sparsity in the reconstructed output or using a more complex inverse model (artificial
neural network), we leave for future work.
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