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Abstract: Optical femtosecond pump-probe experiments allow to measure the dynamics of
ultrafast heating of metals with high accuracy. However, the theoretical analysis of such
experiments is often complicated because of the indirect connection of the measured signal and
the desired temperature transients. Establishing such a connection requires an accurate model of
the optical constants of a metal, depending on both the electron temperature Te and the lattice
temperature T l. In this paper, we present first-principles simulations of the two-temperature
scenario with Te ≫ T l, showing the optical response of hot electrons to laser irradiation in gold
and ruthenium. Comparing our simulations with the Kubo-Greenwood approach, we discuss the
influence of electron-phonon and electron-electron scattering on the intraband contribution to
optical constants. Applying the simulated optical constants to the analysis of ultrafast heating of
ruthenium thin films we highlight the importance of the latter scattering channel to understand
the measured heating dynamics.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Femtosecond optical pump-probe measurements became a standard technique for accessing the
ultrafast dynamics of quasiparticle excitation and relaxation in the solid state [1–3], correlated
systems [4,5], and warm dense matter [6–10]. The way in which a measured transient optical
response reflects the relaxation dynamics of excited matter is often indirect. The state-of-the-art
approach for acquiring this knowledge is by performing direct quantum mechanical simulations
of a pump-probe experiment using time-dependent density functional theory (TD-DFT) [11,12].
However, due to the significant complexity of this method, researchers often employ the two-
temperature model (TTM) [13,14] or its extensions [15–18] for studying temperature dynamics,
and model the optical response as a function of transient temperatures.

At low excitation energies, a linear relation between the measured signal and electron and
lattice temperatures is often assumed [2]. However, in a general case of arbitrarily strong
excitation, such an assumption does not necessarily hold, and a detailed understanding of how
optical properties evolve with temperature is required. Analytical models allow for the treatment
of simple [19,20] and noble metals [21,22], but most materials require DFT simulations at finite
temperatures. The temperature-dependent optical response of systems with a bandgap is modeled
via the Bethe-Salpeter equation approach, allowing for electron-hole interaction [23]. Density
functional molecular dynamics (DFT-MD) combined with the Kubo-Greenwood theory has
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proven to be highly successful in describing systems where single-particle excitations dominate,
such as metals [19,20,24] and dense plasmas [25–27].

In this work, we investigate the electron-temperature-dependent optical dielectric function of
gold and ruthenium through DFT-MD simulations and the independent-particle approximation
for the dielectric function. Gold has been extensively studied in this regard [7,24,28–31], which
makes it an ideal material for testing our methodology at conditions typical for experiments on
ultrafast laser excitation. On the example of gold we demonstrate that, although the employed
approach is equivalent to the Kubo-Greenwood theory, it offers a significant advantage: an
accurate description of the real part of the dielectric function without the necessity to simulate
large systems of atoms, thanks to the explicit consideration of the Drude contribution to the
dielectric function. It also offers an explicit treatment of electron-electron scattering, which
becomes important at high temperatures. The trade-off, however, is the requirement for a priori
knowledge of the damping parameter entering the Drude part.

In contrast to gold, ruthenium received less attention in previous studies. Ruthenium is a
transition metal with a complicated band structure and strong electron-phonon coupling (an
order-two higher than in gold [32]), which makes studying its ultrafast dynamics challenging.
Extremely fast energy transfer between hot electrons and yet cold lattice makes it difficult to
unravel the interplay between the two subsystems via standard optical pump-probe experiments.
Ruthenium transient response was the subject of ultrafast laser experiments, e.g. [33–35], but the
theoretical analysis was limited due to the absence of an accurate model for optical properties in
the two-temperature regime. To the best of our knowledge, no attempts were made in the past
to build such a model for ruthenium either analytically or via first-principles simulations. The
resulting dielectric function of ruthenium, in combination with the aforementioned TTM, enables
us to explore the transient optical response in ruthenium and compare it to recent measurements
of ultrafast-laser-heated ruthenium thin films [34].

2. Model

2.1. Simulation technique

We performed first-principles simulations of the optical properties of gold and ruthenium
using the Quantum Espresso package [36]. We employed the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [37] and scalar-relativistic norm-conserving pseudopotentials
from the PSEUDODOJO database [38] explicitly treating 19 electrons in Au and 16 in Ru. The
simulation workflow was following. First, we performed a geometry optimization procedure
to get relaxed cell parameters. Next, we set up a molecular dynamics (MD) simulation of an
orthogonal 2 × 2 × 2 supercell containing 32 atoms at an ion temperature of 300 K on a coarse
2 × 2 × 2 k-point grid. We performed MD simulation with a timestep dt = 0.5 fs and a total of
2000 timesteps to ensure the supercell does not experience any significant jumps in total energy or
temperature and remains structurally stable. Starting from the 1000th step, we extracted several
independent ionic configurations from the MD trajectory and performed accurate simulations of
their optical properties using the SIMPLE code [39], which is based on the Shirley interpolation
scheme and specifically designed for simulating optical properties.

The simulation of optical properties was performed in four stages: (i) self-consistent simulation
of the electron density on a 16 × 16 × 16 k-point grid for Au, and a 24 × 16 × 16 k-point grid for
orthogonalized Ru supercells, (ii) non-self-consistent simulation of the electron wavefunctions
at the Γ-point and its seven periodic images at the corners of the unit cube (see more details in
[40]), (iii) construction of the optimal basis set and calculation of velocity matrix elements on
the k-point grid used in step (i), (iv) interpolation of matrix elements onto a fine k-point grid
twice larger in every dimension than the grid used in steps (i), (iii), and calculation of the optical
dielectric function. We used 80 Ry plane wave cutoff in steps (i) and (ii), 720 bands for Au and



Research Article Vol. 32, No. 11 / 20 May 2024 / Optics Express 19119

500 bands for Ru in step (ii). To take into account the finite electron temperature, Fermi-Dirac
smearing was applied.

Additionally, we performed density functional perturbation theory (DFPT) simulations of the
electron-phonon (Fan-Migdal) self-energy within the ABINIT package [41,42] using the same
parameters as in our previous work [32], and used it as an intraband damping parameter in step
(iv).

2.2. Dielectric function

The target quantity of our first-principles simulations is the electron-temperature-dependent
complex dielectric function ε(ω), which defines optical properties such as complex refraction
index n + ik, absorption coefficient α, and reflectivity R of a given material [43]:

n(ω) + ik(ω) =
√︁
ε(ω)

α(ω) = 2kω
c

R(ω) =
|︁|︁|︁|︁n(ω) + ik(ω) − 1
n(ω) + ik(ω) + 1

|︁|︁|︁|︁
2

(1)

here ω is an energy of incident photons, and c is the speed of light in vacuum. Hereinafter, we
use atomic system of units ℏ = e = me = 1.

For a metal, the dielectric function can be conveniently written in terms of interband and
intraband (Drude) contributions [43]:

ε(ω) = εinter(ω) + εintra(ω) (2)

Within the Kohn-Sham quasiparticle picture and the independent-particle approximation, they
are represented as follows [39]:

εinter(ω) = 1 − 4π
Ω

∑︂
k,n≠n′

|⟨n′k|v|nk⟩|2
ω − ϵn′k + ϵnk + i0

fnk − fn′k
(ϵn′k − ϵnk)2

(3)

εintra(ω) = −
ω2

p

ω(ω + iγ) (4)

where |nk⟩ and ϵnk are the Bloch states and their eigenenergies described by band number n and
momentum k and provided by diagonalization of the Kohn-Sham Hamiltonian HKS, fnk is the
Fermi occupation number for the given state, Ω is the volume of a system, v = −i [r, HKS] is
the velocity operator, and γ is a small broadening parameter that allows to account for a finite
quasiparticle lifetime. The plasma frequency of conduction electrons is given by [39]:

ω2
p =

4π
Ω

∑︂
k,n

|⟨nk|v|nk⟩|2 (−∂ϵ fnk) (5)

The dielectric function ε(ω) given by Eqs. (2)-(4) includes the dependence on electron
temperature Te in several ways: energies ϵnk experience a slight shift with increasing Te, Fermi
occupations and their derivative are functions of Te, and γ may vary with Te. We consider
electron-phonon (eph) and electron-electron (ee) scattering channels as the main contribution to
the finite broadening of conduction electrons, γ = γeph + γee.
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The broadening arising from electron-phonon scattering can be extracted from the imaginary
part of the Fan-Migdal self-energy ΣFM [44]:

γ
eph
nk = 2 Im

{︁
ΣFM

nk (ϵnk)
}︁
= 2π

∑︁
q,n′,v

|︁|︁gv
nn′(k, q)

|︁|︁2 [︁ (︁nqv + fn′k+q
)︁
δ
(︁
ϵnk − ϵn′k+q + ωqv

)︁
+
(︁
nqv + 1 − fn′k+q

)︁
δ
(︁
ϵnk − ϵn′k+q − ωqv

)︁ ]︁ (6)

here, gνnn′(k, q) is the electron-phonon matrix element, ωqν and nqν are frequency and Bose
occupation number of phonon mode ν with momentum q. Isotropic γeph is obtained by averaging
of γeph

nk over Fermi surface.
Eq. (6) is written assuming thermal equilibrium between electrons and lattice. Formally,

in the two-temperature case of interest Te ≫ Tl, one must extend the Fan-Migdal self-energy
to nonequilibrium regime [45] and evaluate it for several electron temperatures, which is a
computationally expensive task. In practice, the self-energy is often weakly dependent on Te
[28,46], and thus can be computed once for normal conditions.

However, for electron-electron scattering, one must account for its dependence on the electron
temperature. This can be done, similar to the electron-phonon contribution, by calculating the
imaginary part of the GW self-energy over a wide range of electron temperatures, which again
requires significant computational resources. Instead, we use temperature-dependent γee values
obtained from the kinetic theory for Au [47], and Ru [48].

3. Optical and electronic properties at normal conditions

In this section, we present the simulated dielectric function at normal conditions Te = Tl = 300 K
and compare it to available experimental data. We also discuss the electron transport properties
such as electron relaxation time, DC conductivity, and resistivity, since they can be easily obtained
from our simulations. Additionally, using the example of gold, we discuss the advantages of
the method we used compared to the Kubo-Greenwood (KG) formalism (see, e.g., [24,49,50]) –
another popular method for the first-principles simulation of optical properties derived from the
real part of dynamical conductivity. While it considers the electron-ion scattering contribution
without the manual inclusion of a damping parameter γ, there is a continuous discussion in
the community whether the electron-electron scattering is taken into account or not [26,51–53].
The recent conclusion is that, although Kubo-Greenwood includes effects of electron-electron
correlations through an exchange-correlational functional, it does not directly account for
electron-electron scattering [27].

Figure 1 shows the real and imaginary parts of the optical dielectric function in gold. In the
region of photon energies up to 1.5 eV, where the intraband part makes a significant contribution,
our simulations are in very good agreement with experimental data. The diverging intraband tail
in the Im ε follows by a pronounced valley arising from a gap in the positions of d-band and the
Fermi level in gold. Because of this gap, dipole transitions from the d-band are suppressed under
normal conditions. At higher energies, when d-s interband transitions contribute, we see a larger
deviation between simulations and experiment. We associate this with an underestimation of
the gap between the d-band and the Fermi level at the PBE level, resulting in the appearance
of an interband hill in the Im ε at lower energies than in the experiment (see Fig. 1(b)). The
more narrow and intense shape of this hill is also arguably due to inaccuracies of the d-band
form imposed by the use of pure PBE. The usage of hybrid functionals or GW corrections
for obtaining accurate band structure is beyond the scope of this work, particularly since at
high electron temperatures errors associated with a choice of exchange-correlational functional
become smaller.

Surprisingly, the refractive index n and the extinction coefficient k, appear to be in better
agreement with the experimental values (see Fig. 1(c)-(d)). Indeed, the interband transition
threshold in n remains unchanged, but the absolute values of n and k are in much better agreement
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Fig. 1. Real (a) and imaginary (b) parts of the dielectric function, real (c) and imaginary
(d) parts of complex refractive index in gold. Red line corresponds to the results of
the present simulations, blue line with circles is the experimental data of Johnson
and Christy [54], purple line with squares is the measurements of Olmon et al. for a
single-crystal gold sample [55].

pronounced in Ru than in Au, because the Fermi level crosses the overlapping d- and s-bands in170

Ru. Under normal conditions, d-s interband transitions in this region are not suppressed, but their171

relative intensity is weak due to the pseudogap-like feature in the Ru electron density of states172

(DOS) around the Fermi level. Simulations suggest several minor interband peaks below 1 eV173
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answer if these minor peaks are the simulation artifact or not, because the available experimental175

optical spectrum of Ru is quite outdated and there is no other data to compare with to the best of176

our knowledge. Similarly to the gold case, in Figure 2(c) we see that the shape of refractive index177

𝑛 is determined by the shape of Im 𝜀(𝜔) and hence also has minor interband peaks not resolved178

by the experiment. The amplitudes of 𝑛 and 𝑘 agree well with the experimental ones.179

Having obtained 𝜔𝑝 as an output of the SIMPLE simulations, we could easily calculate the180
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𝑝/4𝜋 and resistivity 𝜌 = 1/𝜎0 , where the electron relaxation time181
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values provided by our simulations might be underestimated.186

Fig. 1. Real (a) and imaginary (b) parts of the dielectric function, real (c) and imaginary
(d) parts of complex refractive index in gold. Red line corresponds to the results of the
present simulations, blue line with circles is the experimental data of Johnson and Christy
[54], purple line with squares is the measurements of Olmon et al. for a single-crystal gold
sample [55].

with the experiment. We believe this is due to the mutual error cancellation in the real and
imaginary parts of the dielectric function.

The real and imaginary parts of the dielectric function in ruthenium are shown in Fig. 2(a)-(b).
Our simulations demonstrate qualitatively the same behavior of Im ε(ω) in Ru as in Au: there
is a region of dominating intraband contribution below 0.5 eV followed by a strong interband
transition peak around 2 eV. However, the valley in Im ε(ω) separating these two regions is less
pronounced in Ru than in Au, because the Fermi level crosses the overlapping d- and s-bands in
Ru. Under normal conditions, d-s interband transitions in this region are not suppressed, but their
relative intensity is weak due to the pseudogap-like feature in the Ru electron density of states
(DOS) around the Fermi level. Simulations suggest several minor interband peaks below 1 eV
and above 3 eV, which do not appear in the experiment. Unfortunately, we cannot unambiguously
answer if these minor peaks are the simulation artifact or not, because the available experimental
optical spectrum of Ru is quite outdated and there is no other data to compare with to the best of
our knowledge. Similarly to the gold case, in Fig. 2(c) we see that the shape of refractive index n
is determined by the shape of Im ε(ω) and hence also has minor interband peaks not resolved by
the experiment. The amplitudes of n and k agree well with the experimental ones.

Having obtained ωp as an output of the SIMPLE simulations, we could easily calculate the DC
conductivity σ0 = τω

2
p/4π and resistivity ρ = 1/σ0, where the electron relaxation time within
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Fig. 2. Real (a) and imaginary (b) parts of the dielectric function, real (c) and
imaginary (d) part of complex refractive index in ruthenium. Red line corresponds
to the results of the present simulations, blue line with circles is the data taken from
Palik’s handbook [56].

Material 𝛾eph (meV) 𝜏 (fs) 𝜎0 (eV) 𝜌 (𝜇Ω cm) 𝜌exp (𝜇Ω cm)

Au 23.6 27.9 (27.3) 215.6 2.74 (2.16) 2.27 (at 300 K)

Ru 70.3 9.36 (8.2) 75.2 7.86 (5.13) 7.1 (at 273 K)

Table 1. Electron-phonon 𝛾eph broadening, carrier relaxation time 𝜏 , DC conductivity
𝜎0 and resistivity 𝜌 at normal conditions 𝑇𝑒 = 𝑇𝑙 = 300 K for Au and Ru. 𝜏 values in
brackets are obtained from first-principles simulations [57] (for Ru, 𝜏 = (2𝜏⊥ + 𝜏∥ )/3),
𝜌 values in brackets are from the free-electron gas plasma frequency. Experimental
resistivity 𝜌exp is taken from [58].

On the other hand, the plasma frequency of a metal can be simply estimated according to the187

free-electron gas treatment of metals,188
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an effective mass in units of 𝑚𝑒 . Assuming that only s-electrons contribute to charge transfer and190

Fig. 2. Real (a) and imaginary (b) parts of the dielectric function, real (c) and imaginary (d)
part of complex refractive index in ruthenium. Red line corresponds to the results of the
present simulations, blue line with circles is the data taken from Palik’s handbook [56].

SERTA – self-energy relaxation time approximation – is simply τ = 1/γeph. We consider that at
normal conditions, the electron-electron contribution to the relaxation time is negligible. The
results are shown in Table 1. The room-temperature resistivity is slightly overestimated compared
to the experiment. Assuming that relaxation times are correct, we deduce that ωp values provided
by our simulations might be underestimated.

Table 1. Electron-phonon γeph broadening, carrier relaxation time τ, DC conductivity σ0 and
resistivity ρ at normal conditions Te = Tl = 300 K for Au and Ru. τ values in brackets are obtained

from first-principles simulations [57] (for Ru, τ = (2τ⊥ + τ∥ )/3), ρ values in brackets are from the
free-electron gas plasma frequency. Experimental resistivity ρexp is taken from [58].

Material γeph (meV) τ (fs) σ0 (eV) ρ (µΩ cm) ρexp (µΩ cm)

Au 23.6 27.9 (27.3) 215.6 2.74 (2.16) 2.27 (at 300 K)

Ru 70.3 9.36 (8.2) 75.2 7.86 (5.13) 7.1 (at 273 K)

On the other hand, the plasma frequency of a metal can be simply estimated according to the
free-electron gas treatment of metals,

ωp =

√︃
4πne

m∗ (7)
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where ne is an electron density taken as a number of conduction band electron per atom, m∗ is an
effective mass in units of me. Assuming that only s-electrons contribute to charge transfer and
taking m∗ = me, we have ωAu

p = 9.02 eV and ωRu
p = 10.09 eV. Using these values, we found that

the resistivity in Au is about 3% lower than the experimental value, whereas the difference is
about 27% in Ru. The larger error in Ru is rather expected, since the Fermi level in Ru crosses
both d- and s-bands. In other words, d-electrons also participate in charge transfer, and their
contribution to resistivity cannot be completely neglected. Overall, we found the agreement
between first-principles transport properties and experimental data to be reasonably accurate,
validating our approach.

We benchmarked our simulations to KG-based simulations performed by Silaeva et al. [30].
The target quantity of the simulations in the KG formalism is the real part of dynamical
conductivity σ(ω), which is directly proportional to the imaginary part of the dielectric function
[59]:

Im ε(ω) = 4π
ω

Reσ(ω) (8)

The real part of the dielectric function is then restored from Kramers-Kronig (KK) relations
[59]:

Reε(ω) = 1 +
4π
ω

2
π

–
∫ ∞

0

Reσ(ω′)ω
ω′2 − ω2 dω′ (9)

Figure 3 shows the comparison between our simulations and KG ones. The very good
agreement of the imaginary parts of the dielectric function, shown in Fig. 3(b), confirms that
both approaches yield identical Imε(ω) / Reσ(ω) if one uses similar simulation parameters.
However, that is not the case for the real part of the dielectric function shown in Fig. 3(a): the
results reported by Silaeva differ quite significantly from ours. The KG-based Reε(ω) has a
shape closer to the interband contribution, not the total one. At first glance, we found this to be
controversial: why, with Imε(ω) being essentially the same, does the KG Reε capture mostly
interband transitions?
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Fig. 3. Total dielectric function, its interband and intraband contributions, and Kubo-
Greenwood-based dielectric function taken from Silaeva et al. [30]. (a) is the real part, and
(b) is the imaginary part of dielectric function. Inset in (b) shows the low-energy shoulder of
Imε(ω).

The following reasoning can answer this question. While the KG approach formally includes
both intra- and interband contributions to dynamic conductivity, the intraband part converges
very slowly with an increase in supercell size and may require simulating up to several thousand
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atoms [60]. However, the usage of KK relations in Eq. (9) requires highly accurate values of
the dynamical conductivity in the DC limit (ω → 0) [24], where the intraband contribution
dominates. Consequently, although the Kubo-Greenwood formalism provides reasonable optical
conductivity data without any a priori knowledge of the broadening parameter γ, in most cases,
it necessitates a significant computational effort to obtain an accurate real part of the dielectric
function for materials with a non-vanishing intraband contribution. It follows from all of the
above that Silaeva et al. could not reach converged values of DC conductivity, and hence were
not able to produce an accurate real part of the optical dielectric function. In contrast, the explicit
inclusion of the Drude term in the dielectric function allowed us to achieve reasonably accurate
ε(ω) without the costly simulations of supercells with thousands of atoms included. However,
it comes at the expense of additional simulations of the γ value, which in some cases might
require a similar or even greater effort, depending on the level of theory introduced to account for
broadening effects.

4. Optical properties at high Te

4.1. Influence of electron-electron scattering

Before presenting the optical properties of gold and ruthenium at high electron temperatures,
we will discuss the influence of the temperature-dependent damping parameter γee(Te) on the
dielectric function. To do so, we compare Imε(ω) of gold at several electron temperatures
obtained from our simulations with those extracted from the KG conductivity [30]. As we
discussed above, the statement of whether the KG approach accounts for electron-electron
scattering or not is highly debatable. Contributing to the discussion, we will consider both
scenarios below. The results of the comparison are depicted in Fig. 4.
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scattering as well.240
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Fig. 4. Imaginary part of the dielectric function in gold, calculated for Te =
300 K, 10000 K, 25000 K. Solid lines correspond to Te-dependent γ = γeph + γee, dashed
lines to constant γ = γeph, and thick semi-transparent lines are the KG simulations of Silaeva
et al. [30].

When electron-electron scattering is disabled, the intraband shoulder aligns well with KG
results, especially at not-too-high electron temperatures. At Te = 25 kK, the intraband shoulder
obtained using constant damping becomes noticeably narrower than the KG one. The overall good
agreement between our simulations and KG approach validates our approximation of constant
γeph in a wide range of Te considering that the KG approach does not include electron-electron
scattering as well.
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It is interesting to see how the inclusion of the Te-dependent electron-electron scattering affects
the shape of Imε(ω). As expected, under normal conditions with Te = 300 K, electron-electron
scattering contributes only insignificantly. However, as the temperature increases, its influence
becomes considerable. The low-energy intraband shoulder is roughly twice as wide for Te = 10
and 25 kK compared to the predictions of KG.

If we come back to the previous arguments stating that the KG includes the electron-electron
scattering, then we must admit that the γee(Te) obtained from kinetic theory significantly
overestimates the intraband contribution. There is an argument that the Lindhard screening used
by Petrov et al.[47] might lead to an order of magnitude overestimation of electron-electron
damping [61]. Additionally, there could be a double-counting error: coming back to Fig. 3(b), it
is apparent that the low-energy shoulder is formed equally by both intra- and interband parts.
We speculate that, similarly to KG approach, an interband contribution could solely capture the
effect of electron-electron scattering, making its inclusion in the intraband part unnecessary.

For the sake of scientific objectivity, below we present optical properties obtained both with
and without γee(Te) and discuss the implications of this particular choice in comparison to the
experimental results for femtosecond-laser-heated Ru in Section 5.

4.2. Optical properties of Au and Ru

Figure 5 (a) and (b) presents the electron-temperature-dependent n and k values in gold. The
refractive index n is notably influenced by the specific choice of broadening. With constant
γ = γeph broadening, the infrared intraband shoulder (ω ≤ 0.5 eV) remains unchanged with an
increase in Te. Changes primarily manifest in the 0.5 – 3 eV region due to the smearing of the
Fermi distribution. This smearing opens previously forbidden interband transitions at lower
energies (ω ≲ 2 eV) but reduces the probability of interband transitions at energies above 2 eV.
In contrast, for the Te-dependent γ = γeph + γee broadening, the intraband shoulder intensifies
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Fig. 5. Refractive index 𝑛 and extinction coefficient 𝑘 in gold (a),(b), and ruthenium
(c),(d) for different values of 𝑇𝑒 . Lattice temperature is fixed at normal conditions
𝑇𝑙 = 300K. Solid semi-transparent lines correspond to temperature-dependent damping
𝛾 = 𝛾eph + 𝛾ee , dashed lines – to constant damping 𝛾 = 𝛾eph .
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Fig. 5. Refractive index n and extinction coefficient k in gold (a),(b), and ruthenium (c),(d)
for different values of Te. Lattice temperature is fixed at normal conditions Tl = 300 K.
Solid semi-transparent lines correspond to temperature-dependent damping γ = γeph + γee,
dashed lines – to constant damping γ = γeph.
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with an increase in Te, causing a notable relative decrease in the d-band contribution in the
0.5-3 eV region. The extinction coefficient k (Fig. 5(b)) exhibits weak dependence on γ. The
Te-dependent broadening results in a slightly narrower shape of the intraband shoulder compared
to the constant one only in the infrared region below 1 eV.

The qualitative picture remains the same for ruthenium, but the dominance of the intraband
contribution in the Te-dependent case in the region ω ≲ 2 eV is more pronounced for both n and
k, as depicted in Fig. 5(c) and (d). This is a direct consequence of the overlap between s- and
d-band states, resulting in non-vanishing electron-electron scattering of s-electrons even at low
temperatures and high γee. Such a strong intraband contribution blurs the valley of weak d-s
interband transitions within the 0.5-1.5 eV range.

5. Comparison with experiment for femtosecond-irradiated Ru

5.1. Fermi smearing mechanism in Ru

In our recent work [34], we investigated the mechanism of heating and degradation of ruthenium
thin films irradiated by a ω = 1.55 eV femtosecond laser pulse. We discovered that the optical
response of heated Ru can be qualitatively described by the Fermi smearing mechanism [62,63],
where the peak thermoreflectance signal is proportional to the change of electron occupations
with increasing Te:

R(ω, Te) − R(ω, T0) ∼ 1
exp(ω+∆ϵkBTe

) + 1
− 1

exp(ω+∆ϵkBT0
) + 1

(10)

Here, T0 = 300 K, and ∆ϵ is the difference between the energy level experiencing the optical
transition and the Fermi level of Ru. We treated ∆ϵ as the fitting parameter, independent of
electron temperature, and thus having the meaning of an averaged energy level from which
electrons are excited. By fitting experimental peak thermoreflectance values, we obtained
∆ϵ = −1.2 eV.

Now, with the simulated Te-dependent optical constants in ruthenium, we can assess the
validity of the Fermi smearing mechanism. We calculated the relative reflectivity change using
Eq. (1) and compared it to the change in the Fermi distribution given by Eq. (10). The results of
the comparison are presented in Fig. 6. The Fermi smearing theory, with ∆ϵ = −1.2 eV, suggests
a steeper growth of reflectivity change with an increase in Te compared to our simulations, both
accounting for and neglecting electron-electron damping. If a smaller ∆ϵ = −1 eV is applied,
our ’eph+ee’ simulations agree well with the Fermi smearing curve up to Te = 5 kK. Constant
’eph’ damping, on the contrary, suggests slower growth at low temperatures but has the same
high-temperature asymptotic and overall increasing-saturation behavior as the change in the
Fermi distribution. This is because the constant damping does not influence the valley region in
Ru optical spectra associated with transitions in pseudogap-like feature in Ru DOS, where the
Fermi smearing mechanism can be applied.

At higher temperatures, the reflectivity change obtained from simulations with enabled Te-
dependent electron-electron damping has a peak around Te = 7.5 kK and then decays with further
temperature increase. This deviation from the Fermi smearing theory stems from the extinction
of the valley in the optical spectra at high Te. The increasing-saturating-decreasing behavior of
reflectivity change might, however, more accurately reflect the experimental observations. In our
experiments, we observed a similar behavior in peak thermoreflectance values for a 125 nm thick
film (cf. Figure 3 in [34]). We initially attributed a drop in reflectivity to film damage, but in the
light of current simulations, it may be associated purely with the response of hot electrons before
damage occurred.
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of simulation with Te-dependent ’eph+ee’ damping, blue squares – with constant ’eph’
damping. Solid and dashed lines represent Fermi smearing given by Eq. (10) for two different
∆ϵ .

5.2. Time-resolved optical response

Another application of our optical constants is the estimation of transient thermoreflectance
after ultrafast electron heating using the TTM. This model assumes that instantly thermalized
electrons transfer energy to the cold lattice via the electron-phonon scattering mechanism and
relax towards equilibrium. The evolution of electron and lattice temperatures is described by two
coupled heat equations:

Ce(Te)∂Te

∂t
= ∇(ke∇Te) − G(Te − Tl) + S(t, x),

Cl
∂Tl

∂t
= G(Te − Tl).

(11)

The electron heat capacity Ce(Te) = ∂
∂Te

∫
g(ϵ , Te)f (ϵ , Te)ϵdϵ is calculated from the electron

DOS g(ϵ , Te) of Ru, as simulated in our recent work [32]. The lattice heat capacity Cl is
constant in the temperature regime we are interested in, according to the Dulong-Petit law. We
employed a model for the electron thermal conductivity ke = ke(Te, Tl) proposed by Petrov et al.
[48]. Two models for the electron-phonon coupling parameter G were used: one obtained from
first-principles simulations [32], and another taken from non-adiabatic tight-binding – molecular
dynamics (TBMD) approach [64]. We considered a Gaussian laser pulse S(t, x), taking into
account the effect of multiple reflections at thin film interfaces.

Figure 7 illustrates an example of two-temperature evolution in a 30 nm Ru thin film irradiated
by an incident laser fluence F = 24.5 mJ/cm2. Our model predicts a sharp peak in the electron
temperature for both models of the electron-phonon coupling parameter. According to the
theoretical dependence of R on Te (Fig. 6), one might expect to observe a similar sharp peak in
thermoreflectance values in the experiment. However, experimental values exhibit a noticeably
different behavior: an initial sharp increase due to ultrafast energy deposition is followed by a
rather flat or slowly decaying trend. We found that the experimental trend closely aligns with the
evolution of lattice temperature when the DFT-based G is considered.

Such a good agreement between simulated lattice temperature and experimentally measured
thermoreflectance trends, along with the absence of an electron temperature peak in the experiment,
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Fig. 7. Evolution of electron (solid lines) and lattice (dashed lines) temperatures on
surface of 30 nm Ru thin film for an incident laser fluence 24.5 mJ/cm2 obtained
from the TTM using two different models for electron-phonon coupling: DFT [32] and
TBMD [64]. Black dash-dotted line represents the normalized lattice temperature for
DFT-based electron-phonon coupling. Experimental transient thermoreflectance points
are shown with gray dots.

may not have allowed for the resolution of the electron temperature peak due to a timestep of333

250 fs , while the pump pulse duration was about 85 fs . Second, the electron-phonon coupling334

might be even stronger than ab initio predictions, and with the pump-probe measurements,335

we may have accessed an already equilibrated electron-lattice system. Finally, in the range336

of excitation energies and temperatures reached, the optical properties could depend mostly337

on the lattice temperature. Below, we will evaluate the second and third scenarios and see if338

transient thermoreflectance can be successfully modeled by our first-principles optical properties339

depending on the equilibrium lattice temperature.340
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Fig. 7. Evolution of electron (solid lines) and lattice (dashed lines) temperatures on
surface of 30 nm Ru thin film for an incident laser fluence 24.5 mJ/cm2 obtained from
the TTM using two different models for electron-phonon coupling: DFT [32] and TBMD
[64]. Black dash-dotted line represents the normalized lattice temperature for DFT-based
electron-phonon coupling. Experimental transient thermoreflectance points are shown with
gray dots.

could be attributed to several scenarios or a combination of them. First, the experimental setup
may not have allowed for the resolution of the electron temperature peak due to a timestep of
250 fs, while the pump pulse duration was about 85 fs. Second, the electron-phonon coupling
might be even stronger than ab initio predictions, and with the pump-probe measurements,
we may have accessed an already equilibrated electron-lattice system. Finally, in the range
of excitation energies and temperatures reached, the optical properties could depend mostly
on the lattice temperature. Below, we will evaluate the second and third scenarios and see if
transient thermoreflectance can be successfully modeled by our first-principles optical properties
depending on the equilibrium lattice temperature.

In the equilibrium case Te = Tl ≡ T , we cannot ignore the influence of the lattice temperature on
optical properties. To account for this, we performed several trial DFT-MD simulations at lattice
temperatures up to 1500 K and did not find any significant changes in optical constants compared to
Tl = 300 K. However, at equilibrium and not-too-high temperatures, the electron-phonon damping
γeph should vary linearly with T . We performed simulations of the Fan-Migdal self-energy for
T = 100 − 300 K and extracted a linear slope for this dependence, a = 2.1517 × 10−4 eV/K.

Figure 8 illustrates the temporal evolution of R in two limits of low and high incident laser
fluences. In Fig. 8(a), at a low level of excitation corresponding to peak T ≃ 1000 K in our
TTM simulations, our temperature-dependent optical constants successfully overlapped with
the experimental points when considering the temperature dependence of all damping channels.
The agreement between the experimental data and the simulations becomes unsatisfactory if we
neglect the T-dependence of γeph. Contrarily, in the case of high laser fluence (Fig. 8(b)), the
scenario changes: optical constants simulated with a constant γeph and temperature-dependent
γee provide a better match with the experimental points. This discrepancy is attributed to the fact
that at high excitation levels (and, consequently, high lattice temperatures, peak T ≃ 2000 K), a
linear temperature dependence of γeph does not hold. Assuming a linear relation between γeph

and T at high T values results in an overestimation of changes in optical properties. At elevated
temperatures, γee becomes dominant, and disregarding the temperature dependence of γeph only
introduces a minor discrepancy.
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Fig. 8. Time-resolved thermoreflectance values in 30 nm Ru thin film for incident
fluence of 19.89 mJ/cm2 (a) and 51.23 mJ/cm2 (b). Red solid line corresponds to
𝑅 obtained with an account for equilibrium temperature dependence for both ’eph’
and ’ee’ damping, blue dashed line to constant ’eph’ and temperature-dependent ’ee’
damping, lilac dash-dotted line to constant ’eph’ damping. Experimental data are
shown in gray dots.

introduces a minor discrepancy.360

From the analysis provided, it becomes clear that the accurate first-principles description of361
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strength 𝐺 ≥ 1018 W/m3K is a challenging task. It seems that the two-temperature state occurs363

only at very short timescales, often inaccessible in pump-probe experiments, or nonequilibrium364

electrons start to exchange energy with the lattice, completely missing the two-temperature365

regime. Accounting for the 𝑇𝑒 -dependent electron-electron damping parameter 𝛾ee is crucial for366
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We compared simulated optical properties to experimental time-resolved thermoreflectance388
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Fig. 8. Time-resolved thermoreflectance values in 30 nm Ru thin film for incident fluence
of 19.89 mJ/cm2 (a) and 51.23 mJ/cm2 (b). Red solid line corresponds to R obtained with
an account for equilibrium temperature dependence for both ’eph’ and ’ee’ damping, blue
dashed line to constant ’eph’ and temperature-dependent ’ee’ damping, lilac dash-dotted
line to constant ’eph’ damping. Experimental data are shown in gray dots.

From the analysis provided, it becomes clear that the accurate first-principles description of
ultrafast pump-probe experiments in transition metals with very large electron-phonon coupling
strength G ≥ 1018 W/m3K is a challenging task. It seems that the two-temperature state occurs
only at very short timescales, often inaccessible in pump-probe experiments, or nonequilibrium
electrons start to exchange energy with the lattice, completely missing the two-temperature
regime. Accounting for the Te-dependent electron-electron damping parameter γee is crucial
for an accurate description of optical properties at high levels of excitation, whereas at low
levels of excitation, knowledge of the temperature-dependent γeph is needed. Overall, a complete
understanding of the dynamics of optical properties requires their dependence on both electron
and lattice temperatures. Such type of simulations are possible yet extremely demanding, as
one needs to span the (Te, Tl) space using any of first-principles approaches accounting for both
electron-electron and electron-phonon scattering.

6. Conclusions

We presented the simulated optical properties of gold and ruthenium in the two-temperature
regime Te ≫ Tl, which is achievable in ultrafast laser irradiation experiments. Our calculations
are carried out within the DFT framework and the independent-particle approximation for the
optical dielectric function.

First, to validate our approach, we compared the simulated optical constants and derived
resistivity values with experimental data available at normal conditions (Te = Tl = 300 K). We
discussed the similarities and differences between the method we used and the Kubo-Greenwood
theory. While the imaginary parts of the optical dielectric function are essentially identical in
both methods, our approach provides a more accurate real part without the necessity to simulate
huge supercells due to an explicit account for intraband (Drude) contribution. Second, at elevated
electron temperatures, We demonstrated that the Kubo-Greenwood approach appears to be
incapable of describing electron-electron scattering. In our approach, the accuracy of simulated
optical properties at high Te in the low-energy region (≲ 2 eV) is determined by the accuracy of
the chosen electron-electron damping parameter.

We compared simulated optical properties to experimental time-resolved thermoreflectance
in Ru thin films [34]. We could reasonably match experimental data with our two-temperature
optical constants at high levels of initial electron excitation, whereas at low levels, simulations
with equilibrium Te = Tl were necessary. We attribute this to the very fast thermalization
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between electrons and lattice in Ru, requiring knowledge of optical properties at elevated lattice
temperatures.
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