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Solid-state high-harmonic generation is intrinsically sensitive to band structure, carrier population, and
carrier scattering. As such, solid-state high-harmonic generation is increasingly used as a probe for femtosec-
ond time-resolved pump-probe experiments. So far, most experimental pump-probe studies have reported
photoexcitation-induced amplitude suppression of high-harmonic generation in solid-state media, yet the ori-
gins of this phenomenon remain elusive. Through simulations based on the semiconductor Bloch equations, we
identify the dephasing of the coherent carrier population as the primary mechanism driving this suppression.
Furthermore, we find band gap renormalization to be a source for phase shifts of high harmonics. We introduce an
analytical model, based on a semi-classical action, that supports our numerical outcomes.
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1. INTRODUCTION

Gas-phase high-harmonic generation (HHG) is the cornerstone
of attosecond science [1–4] and is currently maturing towards
industrial applications [5–8]. A notable success story among
the many applications was HHG from molecules, which helped
resolve ionization-induced dynamics [9,10] and was used to
probe photoinduced molecular dynamics [11–14]. Notably,
the possibility of resolving the amplitude and phase of HHG
simultaneously in interferometric measurement techniques
enabled linking the observables to changes in the ionization
potential (phase) and internuclear separation (amplitude) for
simple molecular systems [11,14]. While this provides versatile
insight, the molecular gas-phase HHG is restricted to small
molecules in the gas phase or to molecules with sufficiently high
vapor pressure.

The recent progress on solid HHG has shown that solid
HHG is sensitive to the electronic band structure [15,16], and
can be generated from many materials [17]. As such, a number
of time-resolved studies have already been carried out that have
demonstrated that solid HHG is a potent probe of transient,
light-induced phenomena. These include measurements of
phase transitions via solid HHG [18–20], carrier dynamics in
perovskites [21], electron dynamics in semiconductors [22–26],
topological surface states, phase transitions, and unusually long
scattering times in topological insulators [27,28], to name a few.
Common to most of these experiments was a near-universal
observation of a reduced HHG emission intensity following
photoexcitation [29]. This provides a powerful opportunity

to control light emission on the nanoscale [30–32], and was
recently demonstrated to be a possible tool for super-resolution
microscopy [33].

Both understanding the sensitivities of HHG to light-
induced dynamics to enable HHG spectroscopy and
improving emission control concepts require understand-
ing the microscopic origins of HHG signal changes following
photoexcitation. Early papers speculated that ground-state
depletion due to photoexcitation may play a role [22,23,34].
More recent work mentioned that also small amounts of carrier
excitation might cause changes to the electron-hole dephasing
time via increased carrier scattering [25,35,36]. Here we shed
light on this important question by numerical simulations of
HHG from photoexcited solids. We use semiconductor Bloch
equations to identify that ground-state depletion, or an excited
incoherent carrier population, has a minor effect on HHG.
However, changes in dephasing time and band gap shrinkage
have major effects on HHG amplitude and phase, respectively.
We verify these findings with an analytical two-band model. In
the current manuscript, we focus on pump-induced phenomena
outside pump-probe overlap, as HHG during overlapping
multicolor pulses is better described as HHG from shaped
waveforms similar to the work on gas HHG [37–39].

The paper is organized as follows: in Section 2, we describe
the general microscopic theory behind the semiconductor
Bloch equations that are used to numerically simulate HHG.
In Section 3, we give more details of our specific model. In
Section 4, we present the results of our numerical model.
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Fig. 1. Sketches of the various simulations performed in this work. (a) Electric field of pump and probe pulses (red) and the resulting microscopic
polarization (green) in the conduction band. An eight-cycle pump of 158 nm with peak intensity 1011 W/cm2 is applied. This is followed by an
eight-cycle 800 nm probe with peak intensity 1012 W/cm2. (b) Macroscopic polarization resulting from the pump. The exponential is to guide
the eye. (c) A schematic of varying dephasing time T2 and its effect on the microscopic polarization at different times t and t ′. (d) The microscopic
objects under consideration. Photoexcitation (red) yields electron-hole pairs (blue and yellow) that may be coherent (green). This results in intra-
(blue and yellow) and interband contributions (green) to the spectrum. The dashed line depicts the approximated conduction band after band gap
renormalization.

In Section 5, we discuss these results aided by an analytical
model based on a two-band approximation, classical coherent
electron-hole trajectories, and localized excitation in k-space. In
Section 6, we provide a conclusion and outlook.

2. MICROSCOPIC THEORY OF SOLID-STATE
HIGH-HARMONIC GENERATION

A collinear pump-probe experimental configuration is simu-
lated along a single-crystal direction of a two-band model using
the semiconductor Bloch equations. The results are shown in
Figs. 1(a)–1(c) and discussed in depth in the next section. The
numerical problem is constructed to mimic cubic MgO along
the 0 −K direction where we assume tight binding sinusoidal
bands shown in Fig. 1(d). We use a band gap of E g = 7.8 eV
[40], a valence band height of 0.5 eV, a conduction band height
of 2.92 eV, and a lattice constant a = 4.19 Å. The transition
dipole moment is approximated using first order k · p theory
[41,42]:

dk = d0
E g

εe
k − ε

h
k

, (1)

with d0 = 0.372, a.u. being the transition dipole moment at the
0-point and εe (h)

k the single-particle energies of the conduction
(valance) band. The dipole moment at the 0-point is obtained
based on Quantum Espresso calculations with generalized
gradient approximation in the shape of the Perdew and Zunger
functionals. While the dipole moments depend more on the
exact choice of the simulation parameters than, e.g., the bands,
we checked that the exact value of d0 does not influence our
observations. We drive the system using Gaussian envelope

E (t) := E0 cos(ω0t) exp(−(2
√

ln(2) t
τ
)2) pulses with peak

electric field E0, frequency of the field ω0, and pulse duration
τ . We then numerically solve the semiconductor Bloch equa-
tions without carrier recombination and without Coulomb
interaction:
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k , (3)

using sparse spectral methods [43] on a one-dimensional com-
plex Fourier basis in order to obtain the microscopic polarization
pk and microscopic population f e (h)

k . Convergence is achieved
using 129 points in k-space with a propagation time-step of 10
attoseconds, resulting in a simulation time of <5 min using a
single Apple M1 core.

To obtain the high-harmonic emission spectrum we calculate
the macroscopic interband polarization

P (t)=
∑

k

[dk pk(t)+ c.c.] (4)

and the macroscopic intraband current

J (t)=
∑
λ,k

evλk f λk (t), (5)

withλ ∈ {e , h} and group velocity
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vλg =
1

~
d

dk
ελk . (6)

The near-field emission spectrum is then obtained by summing
the contributions from interband polarization and intraband
current [44]:

Irad(ω)∝ |ω
2 P (ω)+ iω J (ω)|2. (7)

The details of our model were also explained in previous publi-
cations [45,46].

To minimize spectral leakage from the pump pulse, we apply
a Hanning window to the macroscopic polarization and macro-
scopic current in the time domain around the time window of
the probe pulse that generates harmonics before computing the
spectra. In order to analyze the phase and amplitude modulation
of harmonic order HO, we apply another Hanning window
in the spectral domain to the complex-valued spectrum, cen-
tered symmetrically around the harmonic order of interest
HO± 0.25 all throughout this work. The result is then inverse
Fourier transformed in order to obtain the emitted electric field
for a selected frequency. Within the phase analysis, we typically
consider only P (ω). This is because P (ω) is usually dominant
for above band gap harmonics [17], which we independently
numerically verified in all simulations shown in the present
manuscript.

3. SIMULATION FRAMEWORK

In order to analyze the effect of photoexcitation on high-
harmonic generation we simulate a typical pump-probe
experiment. The pulse parameters are chosen to be repre-
sentative of an experimental setting; the low-intensity pump is
one-photon resonant with the band gap whereas the harmonic
generation probe pulse has a longer wavelength far below the
band gap with an intensity chosen such that it is slightly below
the experimentally found damage threshold of the material.
Initially, we consider the pulse sequences in Fig. 1(a) where the
system is either pumped or not prior to the probe. The effects
on carrier scattering in this scenario are illustrated in Figs. 1(b)
and 1(c), and the corresponding processes are depicted in
Fig. 1(d). This approach allows to isolate the effects of pho-
toexcitation by the pump. Doing so justifies not pumping the
system in further simulations. Consecutively we consider two
particular many-body effects under typical carrier densities
χ ∈ [1018, 1020

] cm−3 and lastly combine their effects.
Firstly we consider the effect of increasing carrier density on

the scattering of the coherent population. This increase results
in increasing dephasing time T2 of the coherent population. T2

is a phenomenological addition to the SBE that encapsulates all
many-body interactions effecting the coherent population; this
includes carrier-carrier scattering and carrier-phonon scattering
[47–49]. The effect of dephasing is sketched in Figs. 1(b) and
1(c). Using the experimental findings and phenomenological
model of Ref. [50] we determine a typical range for this dephas-
ing time, which is presented in Fig. 2. This independently
reproduces the observed relative T2 scaling in Ref. [25], where
a similar method is used to obtain the dephasing time, albeit in
a transition metal dichalcogenide sample. This highlights the

Fig. 2. Effect of carrier density on the dephasing time T2 ∝ χ
−0.3

normalized to T2 = 19 fs (left vertical axis, proportionality taken from
Ref. [50]) and band gap renormalization (right axis).

agreement on the scaling of T2. However, noting the phenom-
enological nature of T2, no direct experimental comparison is to
be made. It should be noted that several nonlinear experimental
spectroscopy techniques ranging from photon echo to four wave
mixing [50–52] as well as photocurrent generation [53] and
femtosecond two-photon photoemission [54] exist to extract
dephasing times, often for single-photon excitation close to the
0 point. While those give a good indication, these dephasing
times are not necessarily the same as those relevant to solid
HHG, which are driven by multiphoton excitations as well as
intraband electron-hole accelerations to high carrier momenta.

We then perform independent simulations per value of T2 to
consider its effect on high-harmonic generation.

Second, Ref. [55] reported a widely used phenomenological
model that described experimental data for band gap shrinkage
with increasing carrier density χ : 1E g (χ)=

κ
εs
(1− χ

χer
)1/3,

where κ is a fitting parameter, χer is the critical concentration of
free carriers, and εs is the relative static dielectric constant of the
semiconductor. We use this model to estimate typical1E g val-
ues as seen in Fig. 2. To model the renormalization effect we then
perform independent simulations per value of1E g as depicted
in Fig. 1(d). We thus approximate the band gap renormalization
as linear all across k.

Lastly, both effects are combined providing a simple but effec-
tive microscopic picture of the effect of photoexcitation on high-
harmonic generation.

4. NUMERICAL RESULTS

We start by simulating the pump-probe experimented sche-
matically depicted in Fig. 1(a). To allow for the accumulation
of coherent population within the (pump) probe simula-
tion(s) we choose a dephasing time larger than one optical
cycle, thus defining T2 = 10 fs. We define the delay between
the envelope peaks of the pulses to be 150 fs� T2 such that all
pump-induced microscopic polarization, that is, coherence,
prevails prior to the probe. Within this work, we denote differ-
ent simulations using dashed and solid lines. The total spectral
contributions are shown in shades of orange, whereas the inter-
band and intraband contributions are shown in green and blue,
respectively.

As in Ref. [56], we observe from Fig. 3(a) the pump to
enhance below band gap generation, which we elaborate below.
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Fig. 3. (a) Spectral contributions from the pump-probe (solid lines) and probe (dashed lines) simulations. The total contributions are shown with
an infill whereas interband and intraband are shown in green and blue, respectively. (b) Reconstructed electric fields for the seventh harmonic (HO7)
under double- and single-pulse scenarios.

Fig. 4. Effect of dephasing time on high-harmonic generation. A reduction of dephasing time is expected after photoexcitation to last for as long as
there are incoherently excited carriers. (a) Resulting contributions to the spectrum for longer and shorter dephasing times. (b) Reconstructed electric
fields of the seventh harmonic (HO7) for various dephasing times. The vertical black line is to guide the eye.

The intraband contribution is substantially enhanced below
the band gap - that is, below the energy initially provided by
the single-photon excitation - when the system is pumped
prior to the probe. This occurs as the single-photon excitation
provides additional carriers that contribute to the low-energy,
below-band gap part of the intraband current. We thus see that
photoexcitation may enhance below-band gap intraband dom-
inated harmonics from a microscopic point of view. However,
this picture may be called into question when also considering
macroscopic effects, i.e., phase matching, as emission from the
incoherently excited carriers may not provide a fixed phase
relationship that is needed for the coherent buildup of HHG.

We now analyze the phase of HHG following photoexcita-
tion in the present simulation configuration. Figure 3(b) shows
the emitted electric field over two cycles of harmonic seven,
obtained by filtering harmonic seven of the complex-valued
spectrum and Fourier transforming back into the spectral
domain as described above. Here we observe no amplitude
nor phase change when comparing (pump-) probe sequences.
This result is consistent among all observed above-band gap
harmonics. Thus, to simplify the model and ease computation,

the pump pulse is left out in further simulations where we focus
on the above-band gap harmonics.

Notably, we consistently observe spectral asymmetry of the
harmonic around the band gap for varying band gaps. Thus
we relate the dip in the left shoulder of the fifth harmonic in
Fig. 3(a) to the band gap, specifically to band gap emission that
is always present in the simulations.

To analyze the effects of reduced dephasing time, which is
known to be an accompanying multielectron effect of pho-
toexcitation, Fig. 4(a) illustrates the spectral change caused by
different values in dephasing time with respect to the optical
cycle length of the probe. Note that a decrease in dephasing time
is due to increased carrier scattering. That means that we expect
a reduction of dephasing time right after photoexcitation, and
to last as long as there is (incoherent) carrier population, which
typically is on the order of picoseconds to nanoseconds. In
Fig. 4(b) the total yield for all harmonics significantly drops for
low dephasing times as supported by recent findings [25,56–
59]. This is quantified in Fig. 4(b), where we again analyze the
time-profile of harmonic seven. Here we observe a significant
yield decrease for dephasing times smaller than two optical
cycles. We relate this to increased scattering resulting in less
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Fig. 5. Effect of band gap renormalization under a single-pulse scenario without a probe. (a) Resulting contributions to the spectrum for
smaller and larger band gap renormalization. (b) Reconstructed electric fields for the seventh high harmonic (HO7) with and without band gap
renormalization.

Fig. 6. Combined effect of band gap renormalization and varying scattering of the coherent population as a function of carrier density under a
single-pulse scenario. (a) Resulting contributions to the spectrum for smaller and larger carrier densities. (b) The effect of carrier density on the phase
of harmonics. The vertical black line serves as a guide to the eye.

microscopic polarization to be accumulated over the duration
of the laser pulse, resulting in a yield decrease. Additionally, a
phase change is observed. We attribute this phase change to the
gradual change in the dominant (sub-)optical cycle in which
most of the harmonic is emitted. This is explained by the
time-dependent change in the accumulated coherent
population along the duration of the laser pulse.

Furthermore we analyze the effects of band gap shrinkage on
high-harmonic generation, another multielectron effect known
to occur following photoexcitation [55]. The nuances of band
gap renormalization and its effect on the spectrum, particularly
around the band gap, are captured in Fig. 5. In particular, we
display band gap renormalization for selected values in Figs. 5(a)
and 5(b). Inverse Fourier transforming harmonic seven uncov-
ers band gap renormalization to cause a significant phase change
1φ. Figure 5(b) quantifies the phase change for large 1E g .
Here we observe that harmonics with energies ≥ E g undergo
significant phase change.

Combining the two many-body effects reveals varying car-
rier density to cause both amplitude and phase modulation as

observed in Fig. 6. We observe a reduction of overall emission,
that is, amplitude, both visible in the spectrum in Fig. 6(a) and
the time-domain signal of harmonic seven in Fig. 6(b). We also
see a clear phase shift of the emitted harmonics. This is illus-
trated for the seventh harmonic in Fig. 6(b), where a 0.14 rad
absolute phase shift is observed. As elaborated above, the ampli-
tude reduction is due to increased carrier scattering, which is
synonymous with a reduction of the dephasing time, and the
phase shift is due to band gap shrinkage. These results establish
the qualitative phase shifts and amplitude suppression following
the multielectron effects induced by photoexcitation. In the
next section, we present quantitative pump intensity scalings
and compare to an analytical theory.

5. DISCUSSION AND SUPPORTING
ANALYTICAL MODEL

To support the numerical simulations we develop an analyti-
cal model that evaluates the semi-classical laser-driven carrier
trajectories and incorporates the multielectron effects of band
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Fig. 7. Solid-state HHG (a)–(c) phase and (d), (f ) amplitude changes. Numerical results as function of (a), (d) combined band gap renormaliza-
tion and varying dephasing time; (b), (e) dephasing time; (c), (f ) band gap renormalization. Shades of brown indicate numerical results of Figs. 2–6
based on the semiconductor Bloch equations. Filled shades of dark green indicate the analytical theory, Eq. (13), of HO7 for both long trajectories
(dashed) and short trajectories (dotted). The analytical theory uses a peak intensity of 7 TW/cm2 and encompasses HO7 and HO9 in panel (c). The
light green dashed-dotted lines in (e) indicate analytical theory, Eq. (17), based on fitted characteristic excursion times from (c).

gap renormalization and carrier scattering with the same phe-
nomenological expressions introduced in the previous sections.
The analytical results are depicted in Fig. 7 together with the
extended results from the previous section. Figure 7 shows phase
(a)–(c) and amplitude (d)–(f ) changes caused by simultaneous
band gap renormalization and dephasing-time reduction (a),
(d); dephasing-time reduction (b), (e); and band gap renor-
malization (c), (f ). The semiconductor Bloch equation (SBE)
results in Fig. 7 are shown in shades of orange/brown, and the
results from the analytical model introduced in this section are
shown in green. In the following, we discuss the results from
the previous section and introduce the analytical model con-
currently, aiming for a thorough understanding of the observed
phenomena in each panel of Fig. 7.

The combined effect of both many-body effects on the
phase and amplitude as a function of carrier density is shown in
Figs. 7(a) and 7(d). Note the scaling is in the base 10 logarithm
of carrier density and thus non-linear in both T2 (blue) and
1E g (red). Both panels nicely display results consistent with the
underlying effects as discussed before. An exception here is the
phase of harmonic nine, which increases for very short dephas-
ing times. We attribute the increasing phase change of harmonic
nine at sub-optical cycle dephasing times to the uncertainty in
yield as it reaches the numerical noise floor.

In Fig. 7(b) we observe a strong phase change for harmonic
five, which is located at the band gap. This is explained by a

decreasing band gap; this allows for increasing accumulation
of population, manifesting itself in increasing emission earlier
during the pulse envelope. This furthermore quantifies the
phase change as observed earlier in Fig. 4(b). We relate the phase
change by varying T2 to a truncation of the time over which
harmonics are rejected, which may be interpreted classically as
the transit times of the electron trajectories. This can further
cause a gradual change in the dominant emitting optical cycle.
This is explained by longer T2 allowing for more accumulated
population to exist posterior to the pulse envelope peak. In
return decreasing T2 shifts the apparent maximum in popula-
tion (emission) to an earlier moment in time. Consecutively
the phase change caused by T2 becomes significant as T2 reaches
(sub-)optical cycle timescales.

To provide more insight into the numerical findings, we
establish an analytical model. For this, classical trajectories are
obtained by considering the SBEs for two bands in the limit
of low carrier inversion. The semi-classical description can be
derived from the SBEs by using the interband saddle point
approximation [60]. For the analytical model, we use identical
band structure and a transition dipole moment as the numeri-
cal simulations. The trajectories are solved for a single optical
cycle of the driving field. The effective carrier momentum for a
specific excitation time ti is determined by the external field as

k(t)= A(t)− A(ti )+ k0. (8)
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Here A(t) denotes the vector potential. We assume a perfect
cosine driving field allowing us to express the vector potential as

A(t)=−
∫

E (t)dt =−
E0

ω0
sin(ω0t). (9)

Only excitation from the 0-point is considered, so k0 = 0. By
limiting the excitation to a single point in k-space we obtain
distinct long and short trajectories. The SBE simulation does
not yield distinct trajectories as excitation all along the bands
is allowed [61]. If we try to interpret this from a classical point
of view we can consider the SBE simulation resulting in the
weighted sum of all possible trajectories. From this we do not
expect the SBE simulations to match either with the long or
short trajectory results; instead, we expect the long and short
trajectories to provide an upper and lower bound enclosing the
SBE results.

The trajectories for the different excitation times are obtained
classically by integration of the group velocity over time:

xλ(t)=
∫ t

ti

vλg (k(τ ))dτ . (10)

Recombination is assumed to occur when the spatial
displacement between the electron and hole goes to zero:

1x (t f )= x e (t f )− x h(t f )= 0. (11)

Here t f denotes the recombination time of the trajectory. Only
trajectories that recombine contribute to the interband current.
The emitted photon energy for a given trajectory is the energy
difference between the charge carriers at the time of recombina-
tion. The semi-classical model can only evaluate trajectories for
the above-band gap and below-cut-off harmonics.

We consider the effects of band gap renormalization on the
phase of the interband current. The phase of the emitted light is
evaluated via the semi-classical action

S(t f )=

∫ t f

ti

1ε(k(τ ))dτ . (12)

From the semi-classical action, the dipole phase is
evaluated [62]:

φ = Nh

(
ω0t f +

π

2

)
− S(t f ). (13)

Here Nh is the harmonic order. The dipole phase for HO7
obtained with the analytical model is shown in Fig. 7(c). The
long (dark green dashed) and short (dark green dotted) tra-
jectory results for HO7 are shown separately and enclose the
numerical results. As predicted, The SBE simulation results
show neither behavior that corresponds solely to the short or
long trajectories. Both the numerical and analytical models
show the phase linearly varying with the band gap shrinkage. For
small changes to the band gap, the trajectories and their excita-
tion and recombination times will only vary slightly. Under the
condition that the band gap changes are small, we can obtain an
approximation of the change in the dipole phase:

1φ ≈1E g1t, with 1t = t f − ti . (14)

This linear relation matches the numerical results and indicates
that the phase change is dependent on the 1t of the different

harmonic orders. As there are no classical trajectories in the SBE
model, 1t can be interpreted as the characteristic excursion
time of the harmonic instead of the trajectory duration. We
obtain the characteristic excursion times of the harmonics via
the use of linear fits on the curves in Fig. 7: 1tHO3 = 0.30 fs,
1tHO5 = 3.85 fs, 1tHO7 = 1.45 fs, and 1tHO9 = 1.63 fs.
Except for HO5, we note that the phase change increases with
harmonic order. This dependence can be understood as with an
increased excursion time, the driving field can accelerate charge
carriers to higher energies. The deviating behavior of HO5 can
be attributed to this harmonic being close to resonance with the
band gap. More specifically, for HO5 the temporal overlap with
the band gap emission, which is limited by the much longer T2,
prolongs the characteristic excursion time1tHO5.

The effect on the harmonic yield as a function of carrier
density is displayed in Fig. 7(d). We observe HO5 deviates
from the other harmonics and attribute this to the band gap.
Notice furthermore that HO3 slightly increases again, around
χ = 1020 cm−3; we attribute this to numerics and do not
conclude it as a physical change.

We now analytically consider the effect of dephasing on the
interband current. The interband current can be expressed
as [60]

j (ω)

=ω

∫
∞

−∞

∫
BZ

∫ t

−∞

e−iωt
[d∗(k) · E (τ ) · d(k + A(τ )− A(t))

· e i S(k,τ,t)−(t−τ)/T2 + c.c.]dτ d3k dt .
(15)

Here BZ refers to the Brillouin zone. Using the saddle-point
approximation we derive an expression for the interband current
for a particular trajectory n with excitation time ti,n :

jn =Cn

∫ t f

ti,n

[
d(k0 + A(τ )− A(ti,n)) · E (τ ) · e−(t f −τ)/T2

]
dτ .

(16)
Here Cn is a trajectory-dependent constant. The intensity for a
given trajectory is obtained by considering the absolute squared
value of the current:

In ∝ | jn|2. (17)

The intensity for HO7 obtained with the analytical model is
shown in Fig. 7(e) using a dark green infill with short trajec-
tories (dotted) and long trajectories (dashed). Although there
is a rough qualitative agreement between the analytical and
numerical results we note that the numerical results fall entirely
outside the analytical range. It is clear that in the numerical
simulation, the suppression greatly exceeds that of the analytical
model. We attribute this discrepancy to the complete disregard
of excitation in our analytical model. While in the SBE simu-
lation the population transfer during excitation is lowered by
a smaller T2 that results in a faster-decreasing polarization, no
such mechanism is taken into account in our analytical model.
As such the analytical model is missing an additional damping
term.
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To correct for the change in excitation we consider the
effects of T2 on the population. While T2 is affecting coher-
ence rather than population in the first instance, a persisting
coherence (polarization) has influence on additional popula-
tion transfer during light-matter interaction. In the limit that
the carrier excitation fraction is low, we can approximate the
change in population as being proportional to the polarization.
In turn, assuming the majority of the polarization is created
near the extremes of the electric field we can approximate the
polarization between these extremes as an exponential decay:

∂

∂t
f λk ≈−2 Im[dk E (t)p∗k ] ≈−2 Im

[
dk E (t)p0e−

t
T2

]
.

(18)
Here p0 is a complex constant. Considering this approximation
allows us to introduce a correction for the effects of excitation by
scaling the current with a factor exp(−1t/T2).

We introduce an additional approximation to the current by
assuming the dipole coupling to be constant, which allows for
direct integration of the integral in Eq. (16):

jn =C ′n
T2

1+ T2
2 ω

2
0

[
cos(ω0t f )+ T2ω0 sin(ω0t f )

− e−
1t
T2 [cos(ω0ti )+ T2ω0 sin(ω0ti )]

]
. (19)

Additionally we simplify our current expression by assum-
ing the excitation and recombination to occur near the
peaks of our electric field, sin(ωt f )= sin(ωti )= 0 and
cos(ωt f )= cos(ωti )= 1, and by assuming that the dephas-
ing is fast relative to the driving frequency. With these additional
assumptions and including the additional term for excitation
correction, we obtain

I ∝
∼

e−
1t
T2

∣∣∣T2

(
1− e−

1t
T2

)∣∣∣2. (20)

This expression shows that an increased dephasing due to pho-
toexcitation will result in suppression of the HHG intensity.
This equation also shows that for longer excursion times sup-
pression will increase, which is expected to correspond to the
higher-order harmonics. Interestingly the relation obtained
is again characterized solely by the effective excursion time
1t . To evaluate the consistency of this expression, we used the
excursion times obtained from the linear fits of the SBE phases
shown in Fig. 7(c). These phases were used to plot the inten-
sity as described with Eq. (20); the resulting intensity curves
can be seen in Fig. 7(e) (light green dashed-dotted lines). We
observe good agreement between the analytical curves and the
SBE simulation results for H05, HO7, and HO9, especially
considering the significant number of approximations made in
the derivation of the analytical expression. For HO3, however,
the analytical and SBE results do not match; this makes sense as
this harmonic is intraband-dominated and we only consider the
interband current in the analytical model.

We also observe minor amplitude changes for increasingly
reduced band gaps in our SBE simulations, Fig. 7(f ), which is
attributed to enhanced strong-field excitation (tunneling) due
to a lower band gap, as also expressed in Eq. (1). For HO5 a
noticeably stronger amplitude increase is observed as the band

gap reduction brings the band gap closer to resonance with the
harmonic.

We demonstrated that the numerical SBE simulation results
of the phase change due to the band gap shrinkage and the inter-
band intensity change due to dephasing are consistent with the
analytical model. Here we found that both these effects in this
two-band model can be characterized by an effective excursion
time1t of the different harmonics.

6. CONCLUSION AND OUTLOOK

Within a two-band numerical and analytical model of MgO,
we have demonstrated that the multielectron effects initiated
by photoexcitation can cause significant signal changes in
solid-state high-harmonic generation. Using phenomeno-
logical expressions derived in literature from experimental
results, we have constructed an approximation to the combined
many-body effect of band gap renormalization and varying
dephasing time of the coherent population as a function of
carrier density. We then isolated these effects and identified
that the dephasing time of the coherent population acts like a
harmonic-order dependent amplitude suppression of the HHG
spectrum and additionally yields harmonic-order dependent
non-linear phase shift to the emitted harmonic. We furthermore
observe band gap renormalization to yield a linear harmonic-
order dependent phase shift to the emitted harmonic. Both
effects are induced by carrier excitation and scale with increasing
carrier densities. Combining these effects yields both ampli-
tude and phase modulation as a function of carrier density.
Additionally, we have shown that we can neglect modifications
of the HHG spectrum due to state blocking from the incoherent
carrier population excited by a pump pulse for above-band gap
harmonics.

Our results provide guidance for interpreting transient high-
harmonic spectroscopy of solids and give hints on how prepulse
sequences can be designed to optimize the emission control of
solid HHG.

To further advance the simulations of HHG from photoex-
cited solids ab initio multielectron treatments of k-space and
carrier-density dependent electron scattering are necessary,
ideally integrated into the time-domain integration of the SBEs,
but if not, at least in a static picture to gain more predictive
insight into the effects of photoexcitation on solid-state HHG.
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