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Abstract: We present an interferometric method that employs a birefringent common-path
interferometer to measure absolute nonlinear refractive indices in 5 mm thick CaF2, SiO2, NBK-7
and KBr for femtosecond pulses at 804 nm center wavelength. The measured nonlinear refractive
indices are found to be in agreement with previous literature, over a broad range of pulse energies.
In addition, we show and highlight the importance of thorough B-integral characterization
when using this birefringent common-path interferometer for high-harmonic generation driven
extreme-ultraviolet interferometry. The accumulated third-order nonlinear phase is shown to
have significant impact on the harmonic phase after up-conversion to higher orders, but can be
accounted for if correctly characterized.
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1. Introduction

Within optical science, interferometry is a cornerstone of scientific advancement in active
fields such as attosecond science [1], imaging [2] and gravitational wave detection [3]. While
Mach-Zehnder and Michelson interferometers induce time delay between a reference and sample
beam of light by splitting and geometrically altering their relative path lengths [4,5], common-path
interferometers have the reference and sample beam follow the same or opposite paths [6,7]. This
class of interferometers suffer significantly less from any undesired path length shifts due to beam
pointing instability, mechanical vibrations of optics or air currents as both beams will be affected
equally [8,9]. Birefringent common-path interferometers uniquely use the distinct refractive
indices between orthogonal polarization components in a birefringent material to introduce
retardation between the two beams [10]. In 2012, Brida et al. introduced the Translating-Wedge-
Based Identical Pulses eNcoding System (TWINS), a birefringent common-path interferometer
that parts two identical phase-locked pulse copies in time. Through spectral interferometry
they confirmed the extremely high stability of the common-path configuration, with fixed delay
fluctuations of only 5 as over 30 min and minimal time delay steps of 3.6 as. TWINS has since
been used for Fourier transform spectroscopy in the extreme ultraviolet (XUV) [11], visible
[12] and infrared [13] regions, as well as for hyperspectral imaging [14], and most recently in
valleytronics [15], photocurrent spectroscopy [16] and XUV interferometry. The latter has been
performed by seeding a XUV free-electron laser with UV pulse pairs from TWINS [17], as well
as using near infrared (NIR) pulse pairs from TWINS to drive high-harmonic generation (HHG)
by spatially separating foci of the two NIR beams in the HHG target.[11,18,19]. Lu et al. [18]
and Kuzkova et al. [19] showed that the emission phase of XUV harmonics from solids depends
on the relative intensities of the driver NIR pulse pair, confirming the intensity dependence of the
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emission phase (dipole phase) of HHG. However, because HHG in solids requires intense peak
intensities (several TW/cm2 ), the two NIR beams additionally accumulate a nonlinear phase
shift caused by the nonlinear refractive index n2 of the transmissive optics within and beyond
the TWINS and throughout propagation in the HHG target. Therefore, TWINS experiments
that utilize pulse pairs of unequal intensities should carefully characterize the nonlinear phase
that is accumulated and correct the experimental results for it. Such a correction was performed
by Kuzkova et al. [19] for extracting the dipole phase of high-harmonic emission from solids
in a TWINS-based interferometry measurement. Here we systematically extend the method to
actually characterize the nonlinear phase accumulation and highlight its impact on measurements.

The XUV interferometry measurement [19] opened a pathway for a novel, compact and highly
stable interferometric measurement technique of n2. For parametric and instantaneous light-matter
interactions, where the applied electric fields E are not too large (∼ TW/cm2), the field-induced
polarization can be reasonably expanded using a Taylor series. The nonlinear refractive index n2
arises from a third order term, given by P(3) = 3ϵ0

∑︁
jkl χ

(3)
ijkl(ω;ω,ω,−ω)Ej(ω)Ek(ω)E∗

l (ω) [20].
This nonlinear polarization describes the interaction of three waves, twice of the fundamental
frequency ω and one of −ω. For isotropic media and parallel linearly polarized light, the
nonlinear susceptibility χ(3)ijkl only has one independent element, χ(3)1111. For a given wavelength λ,
the effective refractive index ñ then becomes,

ñ(r, t) = n0 + n2I(r, t). (1)

Here, n2 = 3χ(3)/(4n2
0ϵ0c), where c is the speed of light and n0 is the refractive index due to

the linear part of the polarization. Note that the intensity I(r, t), and thus also ñ(r, t), can vary
spatially and temporally. The B-integral can then be defined, which describes the total nonlinear
phase accumulated along the full propagation length throughout the medium,

B =
2π
λ

∫
n2I(z)dz, (2)

where z is the propagation distance. In the case where the intensity stays constant, the integral
simplifies to B = 2π/λn2IL, where L is the total propagation distance throughout the material.

Over the past few decades, n2 has garnered special interest for applications like nonlinear pulse
compression [21], optical limiting [22], and for many all-optical switching devices, such as fiber
Bragg gratings [23,24], which have been used in all-optical logic gates [25,26], fiber couplers,
and Sagnac interferometers. These applications require accurate n2 characterization as to achieve
sufficient nonlinearities while preventing medium damage from applying too high intensities.

Currently, n2 databases heavily rely on Z-scan measurements, a method that exploits self-
focusing, resulting from the radially varying intensity, to extract the real and imaginary parts of
n2 by scanning the focus through a sample. However, the accuracy of this method is limited by
uncertainties in the beam quality factor, which rarely goes below 15% [27]. Other n2 measurement
techniques include (degenerate) four-wave mixing [28], nonlinear ellipse rotation [29,30], beam
self-bending [31], third harmonic generation [32,33], two-beam coupling [34] and interferometric
methods [35–37]. Jansonas et al. used the radial intensity dependence of a Gaussian beam to
induce a radially dependent phase shift between a sample and reference arm, in a Mach-Zhender
interferometer, to extract n2.

Here we show that common-path interferometry can expand on the interferometric approaches
and is able to measure absolute n2 of solid media, the results of which agree with other techniques
often utilized, such as the Z-scan. Furthermore, the uncertainties in our TWINS measurements
of n2 are likely on par with previously demonstrated methods (to the extent that uncertainties and
definitions thereof are provided). Lastly, we demonstrate that accurate B-integral characterization
is crucial for TWINS-driven HHG XUV interferometry, as the nonlinear phase accumulated
during propagation, within and before the target, is multiplied during the high-order harmonic
up-conversion.
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2. Methods

A schematic layout of the experimental setup is presented in Fig. 1(a). A Ti:sapphire laser
amplifier system (Astrella, Coherent) delivers pulses centered at 804 nm, with 7 mJ pulse energy,
40 fs full width at half maximum (FWHM) pulse duration, and a repetition rate of 1 kHz. Before
entering the setup, the laser output was attenuated to tens of µJ using a half-wave plate and
polarizer. After the attenuation, a second half-wave plate, installed on a motorized rotating
mount, was positioned in front of the interferometer to control the input laser polarization. The
beam is restricted by an aperture before the TWINS, due to the limited size of the optics.
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Fig. 1. (a) Schematic overview of the experimental setup, consisting of the following optics:
mirror (Mi), half-wave plate (λ/2) in a rotational mount (indicated by the yellow arrow),
aperture (A), pair of wedges (Wi), polarizer (P), spherical mirror (SM), sample (S), filter (f)
and a CMOS camera (C). (b) TWINS interferometer, blue arrows on the wedges indicate
the optical axis. Input polarization direction is shown varying from 0 to 45◦ from black to
yellow respectively. (c) Relative intensity change as function of input angle as defined in (b),
green crosses show measured values. (d) Spatial beam profile as seen after (first row) and in
(second row) focus for ∆I/I0 = 0 (first column) and ∆I/I0 = 1 (second column). The green
lines indicate the summation range, as explained in the Methods section.

The TWINS interferometer consists of two pairs of birefringent wedges with opposite optical
axes, see Fig. 1(b). Specifically, alpha barium borate (α-BBO) 20x20x1 mm birefringent wedges
(United Crystals Inc.) with an apex angle α= 14◦ were used. The optical axes were under an angle
of 45◦ from the 20 mm edges and the difference between the refractive indices of the extraordinary
ne and ordinary no axis was ∆ n = ne – no = 0.119 at 800 nm. Starting with a s-polarized pulse,
the first pair of wedges delays the polarization component along the extraordinary axis relative
to the polarization component along the ordinary axis. The first wedge of pair W1 is mounted
on a manual stage, allowing control over the path length through the first pair of wedges and
thus setting the initial relative time delay τi, which was held constant throughout the experiment.
Thereafter, the two orthogonal polarized pulse copies go through a second pair of wedges with
optical axes rotated with 90◦ relative to the first pair, compensating the large initial delay. The
second wedge of W2 is placed on a linear piezo stage, with a minimal step size of 1 nm, that
can be translated in and out of the beam path. Given the stepsize, the apex angle and ∆ n, the
TWINS interferometer allows for a final sub-attosecond delay τf between the two pulse copies.
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However, for the n2 characterization, as described later, also the final time delay was held fixed.
In order for the two pulses to interfere, the s-polarization projections are taken from the reflection
of a polarizer. The normalized intensity difference, defined as ∆I/I0 = (I1 − I2)/(I1 + I2), with
I1 and I2 corresponding to the peak intensity of first and second pulse and I0 = I1 + I2, can be
scanned by rotating the half-waveplate at the input of the interferometer, as shown in Fig. 1(c).
The first wedge of W2 is slightly tilted around the x-axis that, due to the varying refractive
indices experienced by both pulses, introduces an angle (∼0.5 mrad) between the k-vectors at
the exit of the interferometer. The two phase-locked pulses are then steered onto and focused
by an Ag-coated spherical mirror with a focal length of 50 cm. The beam profile in and out
of focus are shown per column in Fig. 1(d) for ∆I/I0 = 0 and ∆I/I0 = 1. In focus (z = 0) the
1/e2 beam area Ai was measured to be 6.45 · 103 µm2 and 6.73 · 103 µm2 (corresponding to an
effective beam radius of 45 µm and 46 µm) for pulse 1 and 2 respectively, see Fig. 2(c). The
pulse separation is 247 µm. The small (∼ 3%) difference in peak intensity shown in Fig. 2(c)
means the measurement was not taken at exact ∆I/I0 = 0.0. Yet, this should not effect the beam
area. For z = ±3 mm around the focus, the change in area, for both pulses, was less than 5%. The
pulse duration τp before focus was measured using a home build second harmonic Frequency
Resolved Optical Gating (FROG) to have a Gaussian FWHM of 47± 1 fs, see Fig. 2(a),(b). 5-mm
thick uncoated Thorlabs isotropic windows were used as samples and placed orthogonal to the
beam path at z = 0. As confirmed by the beam area measurements of z = 0 ± 3 mm, the sample
thickness was chosen to be smaller than the Rayleigh length. The focus position, with sample in,
was calibrated by looking at the threshold of white light generation (WLG), thereafter the power
was lowered below the WLG threshold. The sample position in focus, as determined by the WLG
threshold, agreed with the position of the beam profiler in focus. Out of focus a Basler CMOS
camera captured the interference pattern between the two pulse copies, as shown in the first row
of Fig. 1(d). For each sample, the input polarization was scanned over 90◦, going from ∆I/I0 = 1
(all intensity in the first pulse) to ∆I/I0 = −1 (all intensity in the second pulse). Figure 3(a)
shows the projection of the interference pattern of the area bordered by the green vertical lines,

Fig. 2. (a) Measured FROG trace of the pulses before focusing. (b) Reconstructed electric
field (solid black line) as a function of time of the measured FROG trace with it’s temporal
phase (solid blue line). The dashed green line shows a fitted Gaussian function where the red
arrows indicate the corresponding FWHM of the fit. (c) Spatial beam profile measured in the
focal plane. Right panel shows the summed intensity (solid black line) with two separately
fitted Gaussians (dashed green line). Red arrow shows the foci separation.
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as seen in Fig. 1(d), as function of the normalized intensity difference of the pulse pair. As the
relative phase will dependent on the spatial intensity profile of the beam, exact peak locations
were extracted via local Gaussian fits around the peak for every projected interference pattern,
see Fig. 3(b). Figure 3(c) compares the linear fits of different sample for I0 = 55 GW/cm2. The
fits were done for a range of −0.67 ≤ ∆I/I0 ≤ 0.67 where clear fringe contrast can be seen.
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Fig. 3. (a) Projected interference pattern as function of the normalized intensity difference
for SiO2 for I0 = 24 GW/cm2. Green crosses show the fitted peaks. (b) The interference for
∆I/I0 = 0 of a). Red lines show the Gaussian fits per peak, with the green crosses indicating
the maxima. (c) Comparison of the central fringe ∆I/I0 dependent relative phase of the
samples measured for I0 = 55 GW/cm2, linear fits of the data is shown by the solid red lines.
Error bars show the ±2σ uncertainty. The slope is proportional to the nonlinear refractive
index n2.

In order to accurately extract n2 from the observed linear relation, shown in Fig. 3(c) for
different samples, the peak intensity must be measured or calibrated precisely. In this work, the
peak intensity per pulse Ii was calculated using Ii = 4

√︁
ln 2/π · ritsEp/(τpAi). Here, the prefactor

accounts for the Gaussian pulse shape (see Fig. 2(b)) and ri = Ii/I0 is the intensity ratio between
the two pulses. ri was calibrated using beam profile measurements in the focal plane as function
of ∆I/I0, taking into account any transmission or reflection difference due to varying polarization
angles. ts is the sample dependent transmission through the first surface and Ep the total pulse
energy. For each parameter an accompanying uncertainty was measured. The uncertainty in the
pulse duration is taken to be twice the uncertainty given by the FROG reconstruction. As the
relative phase difference originates straight from the B-integral (Eq. (2)), the nonlinear refractive
index can then be extracted using the following,

n2 = a
λ

2πL
. (3)

Here a is the slope taken from the linear fit, as seen in Fig. 3(c). The uncertainty of ∆I is
calculated using error propagation of the uncertainties of all the measured parameters used to
calculate the pulse intensities. Uncertainty in the fitted peak locations of the relative phase are
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also plotted, yet not visible due to their low contributions. Both uncertainty in ∆I and relative
phase position of the fringes were used to find an uncertainty of the slope a [38].

3. Results and discussion

3.1. Nonlinear refractive index and phase characterization in the near-infrared

To demonstrate the use of TWINS as an absolute n2 measurement tool, four common substrate
materials Ca2, SiO2, NBK-7 and KBr, were chosen as samples to test the procedure described
above. Per sample, n2 was calculated from the measured relative phase shift, according to Eq. (3),
for six input peak intensities, ranging from 24 to 55 GW/cm2, see Fig. 4. For every intensity a
background relative phase shift was measured without sample and subtracted from the sample
data to account for the B-integral accumulated anywhere else along the beam path as well as any
other linear phase changes that might occur. As the n2 of air is three orders of magnitude lower
[39] than that of the samples measured, the B-integral contribution of the focused spot in air
during the background measurement is within our final uncertainty and can be neglected. As
shown in Fig. 4, no trend between input peak intensity and extracted n2 was observed. Thus it
can be concluded that self-focusing or other higher-order nonlinear effects were not significant
in the chosen measurement conditions. In addition, the transmission of every sample remained
constant over the full intensity range and agreed well with the values reported by the supplier,
thereby giving no indication of nonlinear absorption.

The n2 results (averaged over all intensities), as well as comparison to existing literature values
from Z-scans, are summarized in Table 1. All reported TWINS values are taken only from the
central fringe, see Fig. 3, that correspond to the peak of the far-field gaussian spatial intensity
profile, such that, together with the summation range shown in Fig. 1, only the highest intensity
region is selected.

Fig. 4. Measured n2 as function of input intensities. The error bars denote the ±2σ
uncertainty. All shown n2 are taken from the central fringe in Fig. 3.

To verify the methodology, the experiments were simulated using Fourier optics [40]: two
beams of equal size and tilt as experimentally measured were propagated through an iris and
focused to the focal plane. Here, each beam was given a phase profile given by the B-integral,
with nonlinear refractive indices, nin

2 , that were chosen to match literature data [27,41] of the
materials used in the experiments. The applied intensities, wavelength, and sample thickness
matched those used in the experiments. Both beams were then propagated to the camera plane
where the experimental methodology was applied to extract an output nonlinear refractive index,
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Table 1. Measured values of n2 compared to literature values for four
samples

Sample n2 / 10−16

(cm2/W)
Wavelength

(nm)
Method Ref.

CaF2 1.47 ± 0.26 800 TWINS This work

1.8 ± 0.27 800 Z-scan [27]

SiO2 2.54 ± 0.45 800 TWINS This work

2.7 ± 0.41 800 Z-scan [27]

NBK-7 3.33 ± 0.59 800 TWINS This work

3.3 ± 0.50 800 Z-scan [27]

KBr 8.98 ± 1.58 800 TWINS This work

7.87 ± 1.62 1064 Z-scan [41]

Uncertainties of the reported values from this work are defined as ±2σ. As for the
references, no explicit definition was given regarding the uncertainties.

nout
2 . Results of the simulations unveiled that the relative phase shift measured at the camera

plane is systematically lower than what is applied in focus due to coupling between different
amplitude and phase components of the near- and far-field. This caused nout

2 to be lower than
what was applied in focus, namely nin

2 /n
out
2 = 1.9. Additionally, as shown in Fig. 2, the pulses

have a temporally Gaussian intensity profile. Due to the slow response time of the camera, the
captured data will be a weighted average of the temporal intensity profile that also lowers the
measured n2. Comparing simulations of a pulse with a flat top intensity profile in time with a
Gaussian intensity profile showed an additional factor of nout,FT

2 /nout,G
2 = 1.4. Both factors are

taken into account for the final n2, as presented in Fig. 4 and outlined in Table 1.
All n2 of the measured samples using the TWINS common-path interferometry technique

overlap, within uncertainty, with values reported by Z-scans. The uncertainties of the TWINS
method are slightly higher for SiO2 and NBK-7 (assuming that the reported Z-scans were defined
as ≥ 2σ). However, no correlation between uncertainty in I1 and I2 was assumed, which due
to the common-path interferometric nature of the setup, makes the given uncertainty an upper
bound. In general, the uncertainty of the current technique could be improved with high accuracy
intensity calibration, finer wave plate step sizes and spatial cleaning of the intensity profile. The
latter would benefit the uncertainty in the y-axis direction of Fig. 3(c), however, as it is, the
Gaussian fitting of the central fringe already provided R-squared values of >0.98. The major part
of the uncertainty comes from the uncertainty in the intensity calibration (x-axis of Fig. 3(c)),
which remains a bottleneck for most of n2 measurement techniques.

3.2. Nonlinear phase effects on high-harmonic driven XUV interferometry

Due to its high long-term stability, TWINS interferometry has been performed over many broad
spectral regions. To highlight the importance of B-integral characterization when using TWINS,
Fig. 5 shows an XUV interferometry measurement performed with the same common-path
interferometer as described in the Methods section. However, instead of placing a mirror after the
focusing optic to steer the foci into a solid sample, the pulse replicas propagate to their focal plane
in a gas cell, housed inside a vacuum chamber. Using high peak intensities (∼100 TW/cm2), the
highly nonlinear interaction between the gas medium and the laser pulses generate high-order
harmonics in the XUV. Thereafter, the harmonics spatially overlap and interfere in the far-field,
where they are detected by a XUV spectrometer, consisting of an unequally spaced curved-groove
laminar-type replica XUV grating with 1200 lines/mm, a double-stack microchannel plate
detector with phosphor screen and a CMOS camera. In Fig. 5(b), the interference fringes of the
fundamental (804 nm) and 13th harmonic (62 nm) are shown as function of relative intensity
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between the pulse pair. The former is measured by taking out the XUV grating and placing the
CMOS camera in the fundamental beam path, upstream of the gas-filled cell.

Fig. 5. (a) Schematic of the XUV interferometry setup. (b) Relative phase shift between
the NIR and XUV pulse pair as function of their varying intensity ratio. (c) Comparison of
the relative phase shift of the fundamental (red circles), the up converted fundamental phase
shift (yellow triangles) and harmonic 13 (pink squares).

During HHG in gases, an electron is first ionized by a strong laser field and then accelerated in
the continuum. Within a single half-cycle of the driving field, the electron can return to its parent
ion once the field reverses direction. Upon recombination, the electron releases its accumulated
kinetic energy, along with the ionization potential, as XUV radiation. Throughout this process,
the oscillating dipole moment acquires a phase that is linearly dependent on the intensity of the
driving field, which is in the end imparted on the generated XUV light.

Clearly the XUV interferometry measurement, as displayed in Fig. 5(a), gives direct access to
the intensity dependent dipole phase. However, when only measuring the relative phase shift
of the 13th harmonic, one would drastically overestimate the dipole contribution. Aside of the
dipole phase, the harmonics are generated with a phase that is ϕq = q · ϕNIR, where q denotes
the harmonic order (in case of Fig. 5, q = 13) and ϕNIR is the phase of the fundamental. Any
additional relative phase shift that is accumulated between the two pulses before HHG is thus
multiplied by q. Figure 5(b) shows the intensity dependent relative phase shift of the fundamental
and the 13th harmonic. The asymmetry observed in the relative phase map of harmonic 13 can
be explained by a measured few percent difference in absolute peak intensity between ∆I/I0 = 1
and ∆I/I0 = −1. As stated in the Methods section, this difference is calibrated for all the shown
∆I/I0. However, due to the nonlinearity of HHG this initially small difference can have a large
effect on the amplitude of the harmonic signal. Nevertheless, the linear relation between the
dipole phase and intensity, as well as the linear relation between n2 and intensity ensures that this
calibrated offset does not effect the measured relative phase shift, which remains symmetric.
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To accurately investigate the intensity dependence of the dipole phase, one must always
measure the difference in B-integral of the fundamental pulses, multiply it by the harmonic
order and subtract it from the measured XUV phase shift. Figure 5(c) shows the measured XUV
phase shift of harmonic 13 as function of ∆I/I0 of the highest intensity fringe compared to that
of the fundamental phase shift and the up-converted fundamental phase shift. Astonishingly
the intensity dependent dipole phase change would be overestimated by 70% if no B-integral
correction is done. Throughout the TWINS wedges the energy per pulse was 2 mJ (with a beam
diameter of ∼ 1 cm). After the polarizer the pulse energy was halved. Yet the intensity rises
again after focusing, which, with the entrance window of the vacuum chamber (2 mm thick SiO2,
positioned halfway along the focal distance) and the gas cell (2 mm medium propagation near
the focus) will add significantly to the nonlinear phase of the pulses. It is important to note that
whenever the pulses are temporally and spatially overlapped, as was the case in the first ∼0.5 mm
of the first wedge, the last ∼0.5 mm of the last wedge as well as through the entrance window,
cross phase modulation between the two beams could occur when the pulses are only partially
overlapped in time. For the current measurements, no clear sign of cross-phase modulation was
observed as there was no shift in harmonic wavelength as function of ∆I/I0.

Detailed measurements of dipole phase in solids with a B-integral correction are provided in
[19], and future work will re-investigate the dipole phase in gases in a similar manner.

4. Conclusion

As there is still a wide range of reported n2’s of a single material (sometimes deviating
with factors of 2 from similar methodology [27,42]), the addition of the current method and
results provide crucial data for n2 sensitive applications. Moreover, because the common-path
interferometric setup is extremely compact and stable and allows the measured sample to remain
stationary, the TWINS n2 characterization method is uniquely positioned among the existing n2
measurement techniques. Finally, we would like to stress the importance of thorough B-integral
characterization for any interferometric application of TWINS, especially when a pulse pair with
unequal intensities is applied in an experiment, e.g. to drive HHG. Alongside interferometry,
B-integral contributions can have impact on many recent solid-state HHG developments, such as
harmonic intensity control [43–47], harmonic beam shaping and imaging [48–50], as well as
super-resolution microscopy [51,52].
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