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ABSTRACT

Fast and high-precision wafer metrology is critical for the semiconductor industry. In this work, we explore the use of simple and cost-effective
optical sensors in combination with data-driven algorithms. We propose and compare three data-driven approaches with varying complexity
that can directly infer sub-nanometer metrology parameters from low-numerical-aperture optical coherent microscope images with the focus
on precision, noise robustness, and data efficiency. In particular, we apply Vision Transformers (ViTs), Convolutional Neural Networks, and
Multilayer Perceptrons to simulated datasets with varying aberrations. We report sub-nanometer measurement accuracy and precision for all
models in the presence of strong optical aberrations and noise also. Furthermore, we find that ViTs consistently achieve low errors and excel

under limited data regimes compared to other models.

© 2026 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0301749

I. INTRODUCTION

Metrology is essential for semiconductor manufacturing pro-
cesses. The industry increasingly relies on a larger number of smaller
metrology marks while simultaneously demanding higher precision
and speed. Hence, increasing the information yield from individual
measurements and being robust to non-ideal measurement condi-
tions is key to conform to industry demands. Data-driven machine
learning is a promising solution to this problem as it allows uti-
lizing complex relation in the data and is potentially correct for
experimental noise and aberrations.

Diffraction-based overlay (DBO) metrology is a very promis-
ing technique for wafer metrology. yDBO metrology target consists
of gratings patterned on successive process layers, as presented in
Fig. 1. One mark consists of four grating pairs: two pairs for horizon-
tal and two pairs for vertical overlay measurements. In the following,
we will focus on only one direction as the procedure for the orthog-
onal direction follows analogously. We consider two sizes of yDBO
targets: C10 (10 x 10 ym?) and C16 (16 x 16 um*). Under coherent
illumination, the intensity difference between +1st and —1st diffrac-
tion orders, coming from these two biased grating pairs, is highly

sensitive to their relative lateral displacement. This shift-dependent
modulation enables accurate extraction of overlay error, making
DBO a powerful approach for high-precision, non-destructive in-
line metrology.” More details on this specific configuration are
provided in Appendix C.

However, currently optical overlay (OV) metrology techniques
face significant challenges.”'' To effectively manage a broad range
of materials used in modern chip manufacturing, an OV metrol-
ogy tool should cover a very wide wavelength range from visible to
near-infrared wavelengths. Furthermore, high-numerical-aperture
(high-NA) imaging is essential to resolve small metrology marks
embedded within complex device layouts. However, high-NA optics
over a broadband wavelength range inherently suffer from increased
sensitivity to aberrations, which, therefore, degrade measurement
accuracy.

Various methods have been proposed to mitigate aberra-
tions before determining the OV and mainly rely on optical setup
optimizations."”'® For instance, spherical aberrations have been
compensated using a tube lens in telecentric configuration.'” Despite
the effectiveness of hardware optimization, these methods intro-
duce additional complexity to the optical setup, require precise
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FIG. 1. lllustrations® in panel (a) show the 3D view of the xDBO metrology marks printed on consecutive layers of the sample and those in panels (b) and (c) show the cross
section of the same marks in a 2D side view. The symmetric (b) and asymmetric (c) scattering is shown for the grating with and without overlay bias, respectively.

calibration, and can limit the flexibility or speed of the imaging
system.

Computational imaging is a novel imaging paradigm based
on joint optimization of hardware and software. Numerical meth-
ods leveraging the full electromagnetic field information to com-
putationally correct a wider range of aberrations have been
proposed.”” ' However, this still requires more complex and stable
measurement systems. Another major challenge in DBO metrology
is the inherently low diffraction efficiency of the marks. As overlay
precision approaches the sub-nanometer scale, the required rela-
tive intensity measurement precision reaches the level of 0.01%.”
Achieving this level of sensitivity demands bright, coherent light
sources to ensure a sufficient photon budget. However, such sources
introduce coherent noise, which degrades image quality. Several
methods have been proposed to suppress coherent noise arti-
facts. Averaging multiple holograms were obtained through vari-
ous optical methods (also known as hologram multiplexing),”
mean/median filtering,”® bandpass Fourier filtering,”” and window
functions.”>”* However, combining approaches and correcting for
stronger, more complex aberrations is difficult. Machine learning
could offer a precise and efficient solution without changes to the
sensor hardware.

Machine learning tools, specifically Convolutional Neural
Network (CNN), have been increasingly popular in optical
microscopy.”’ " Most methods rely on a phase and amplitude mea-
surement to estimate the phase front aberrations, which are com-
putationally removed to retrieve the cleaned image. For example,
Ref. 32 used U-Net CNN architecture to predict background regions
in distorted phase maps, from which the Zernike coefficients are
derived and used to compensate the wavefront aberrations in the fre-
quency domain. Similarly, Ref. 29 also uses a CNN to predict Zernike
coefficients, but performs the coefficient extraction and aberration
compensation before phase unwrapping. A different method is pre-
sented in Ref. 33, where an end-to-end deep learning framework
called HRNet is used to reconstruct amplitude, phase, and two-
sectional objects. Aberration correction using a ResNet50 module to
first identify the different types of aberrations and their coefficients,
before using a U-Net module to reconstruct the undistorted image,
has been demonstrated in Ref. 30. In Ref. 34, a U-Net architecture
with residual connections is trained to reduce speckle noise, using
noisy and noise-free DHM phase image pairs. The work of Ref. 35
also uses a CNN to suppress speckle noise from noisy and noise-free
image pairs, but applies their model on the wrapped phase and eval-
uates on both simulations and experimental data. Self-supervised

learning has also been applied to coherent noise reduction in digi-
tal holography and has the advantage that no noise-free image has
to be provided during training. The work of Ref. 36 outlines an
algorithm to train a denoising model by maximizing the maximum
likelihood estimate of pairs of images with random noise distribu-
tions. All these studies aimed to reconstruct the corrected image
from raw data, which is not actually needed in the metrology task.
Focusing directly on metrology parameters, such as OV, allows for
more flexibility, robustness, and speed.

In this work, we focus on an angle-resolved diffraction-based
scatterometer for overlay metrology. We aim to determine the OV
with the highest precision and speed at the lowest (hardware) cost.
Therefore, instead of high-NA scatterometry, we directly image the
diffracted light with a low-NA single lens onto a camera. We con-
sider a simple optical microscope that captures only the amplitude
image without built-in optical aberration corrections and deploy
front-to-end machine learning models to estimate the overlay value
directly from the raw data. We make use of the fact that we know
the design of the metrology mark and do not need to work with
an arbitrary sample. Finally, we go beyond the well-established
CNN architecture and develop a new model using the more recent
Vision Transformer (ViT). We compare this model to other archi-
tectures from the literature on six different simulated datasets,
ranging from ideal to strongly distorted images. For each of the mod-
els, we perform quantitative hyperparameter tuning and extensive
performance comparisons in terms of computational cost, speed,
and reconstruction accuracy and precision. We demonstrate over-
lay accuracy in the order of 107 nm even for distorted images and
identify the Vision Transformer as the most efficient and robust
architecture, which still achieves top overlay performance.

Il. DATA

To offer a comprehensive analysis of machine learning tools for
optical overlay metrology, we consider multiple datasets. It allows
for capturing different application scenarios. To enable fast and flex-
ible access to labeled measurement data, we utilize an advanced DBO
metrology simulator implemented in MATLAB that uses the beam
propagation method.”’

First, the simulator generates the Gaussian illumination with
an 800 nm wavelength and initializes the sample as a stack of
two gratings with a pitch of 600 nm. The transmission and reflec-
tion coefficients are calculated from the diffraction efficiency of the
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grating and the refractive index of the substrate material. The trans-
mitted field is propagated to the bottom grating, taking into account
parabolic phase profiles because of defocus. Then, the diffraction
from the bottom yDBO target is calculated. Finally, the field is trans-
mitted back through the top grating and superimposed with the
diffracted light from the top grating.

The read and shot noise is drawn from A/(0,1) and A (0,1),
respectively, where I is the intensity of the field. In addition, all data
are randomly shifted by +5 px in horizontal and vertical directions
to emulate non-perfect sensor alignment.

To be able to use realistic optical aberrations of the metrology
sensor in our simulations, aberrations of a custom-designed lens
for the OV sensor have been experimentally measured using dig-
ital holography.”® These wavefront aberrations are parameterized
using the Zernike polynomials,” which allows for the introduction
of specific effects such as defocus or uDBO target tilt by choosing
distinct values for certain coefficients or the application of arbitrary
distortions with random coefficients.

We investigate two commonly used uDBO metrology targets,
C10 (10 x 10 um*) and C16 (16 x 16 um?), and the following three
cases for each of the two yDBO targets (six datasets total).

e Wavefront 0 (W0): no wavefront aberration.

e Wavefront 1 (W1): stochastic wavefront aberration.

e Wavefront 2 (W2): constant experimentally measured wave-
front aberration.

In Fig. 2, an example from each dataset is shown. WO corresponds to
the nearly ideal measurement case, where high-quality optics with-
out aberrations is used or computational correction is applied prior.
In this regime, the images are affected only by relatively low spa-
tial resolution due to the diffraction limit. The W2 datasets contain
constant experimentally measured aberrations, corresponding to the
realistic case, for example, when the measurements are taken from
the same sensor in relatively stable measurement conditions. In con-
trast, the W1 dataset has random aberrations for each measurement,

C10 C16

+1st

—1st

+1st

8 1]

FIG. 2. Examples of image pairs from each dataset. C10 corresponds to the
smaller 10 x 10 yum? uDBO target and C16 to the bigger 16 x 16 ym? uDBO
target. WO, W1, and W2 represent different types of aberrations, as introduced in
Sec. with WO having the least amount of distortions, W1 having different aberra-
tion for each data point, and W2 having fixed aberrations across all images in the
dataset. The color scale represents the normalized intensity.

W1

W2

pubs.aip.org/aip/aml

which corresponds, for example, to highly unstable measurement
conditions or when the same model is used across different sen-
sors. Manufacturing errors such as grating pitch variations or line
roughness are not considered during simulation but could play a
role during the experimental application, specifically for the smaller
uDBO target sizes. However, the sensitivity to these parameters is an
order of magnitude smaller since the grating size and pitch is of the
order of ym while overlay is in nm.

Each of these datasets contains a total of 2048 simulated mea-
surements, where each datapoint is a two-channel 256 x 256 px
dimensional tensor, representing +1st diffraction orders, and the
label is a programmed OV in nanometers drawn from a uniformly
distributed ¢/ (-10,10).

I1l. MODELS

We investigated three established deep learning architectures
and designed corresponding models based on the requirements of
optical OV metrology. For each class of models, we scale the number
of parameters to create differently sized models and consider a total
of nine models ranging from 100k to 30M parameters. We scale up
all parts of the model evenly to ensure the best operability of every
model.

A. Multilayer Perceptron (MLP)

The Perceptron belongs to the oldest machine learning archi-
tectures and is universally used in many different applications.”” """’
The Multilayer Perceptron is characterized by stacking multiple

CNN MLP ViT
[[ Flatten ]\ ([ Embedding ]\
l [1, C'WH] | nose

p

Transformer

Linear

MaxPool2D

T

[1,¢,D,D]

Global Pool

[1,¢,1,1]

1,1

\ _Prediction | )

Multi-Head
Attention

Linear

1,1

)

[1.D, 8, 8]

[1,1,8,8]

.1

Prediction

FIG. 3. lllustration of our CNN (left), MLP (middle), and ViT (right) models; also see
Tables |-l for parameter choices. The MLP Head consists of two dense layers,
which are separated by ReLU activation for the CNN and GeLU activation for the
ViT, matching the activation function of their respective architecture.
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TABLE I. MLP variations with D being the latent dimension.

Name D
mlp_15M 140
mlp_30M 240

dense layers that fully connect all input values to all output val-
ues, followed by a non-linear activation function. While its general
design allows for applications in many scenarios, its lack of structure
also hinders the construction of very deep and large networks.

We construct a simple MLP (as shown in Fig. 3, middle) that
consists of three layers with ReLU activation functions. Before the
first layer, we convert our input image into a column vector by flat-
tening it. This column vector is then projected to the specified latent
dimension D by the first layer, continued by a projection that main-
tains the dimensionality, and then, followed by a final projection to
a scalar value. Table I shows our parameter choices.

B. Convolutional Neural Network (CNN)

Convolutional Neural Networks were originally designed for
computer vision and are used to extract image features by applying
convolutions over (multi-dimensional) data using learnable kernels.
Each kernel is thereby associated with an image feature and per-
forms local linear transformations over sliding windows to create
a map of this feature, often called a feature map. Since the kernel
size is usually much smaller than the image size, CNNs are more
parameter-efficient than MLPs.

Our CNN stacks 3-5 Conv Blocks, which halve the spatial res-
olutions of the input and doubles the amount of feature maps after
each block. A Conv Block applies a two-dimensional convolution,
a ReLU activation function, and a two-dimensional max-pooling
operation. Convolutions use a kernel size of 3 and add 1 padding
pixel near the borders of the inputs, which ensures spatial dimen-
sionalities are retained after this operation and the max pooling
operation halves the spatial resolutions at the end of the block. After
the Conv Blocks, we apply average pooling over the remaining
spatial dimensions and use an MLP head for prediction, which con-
tains two dense layers with ReLU activation. The CNN architecture
is shown in the left panel of Fig. 3, and our parameter choices are
shown in Table II.

C. Vision Transformer (ViT)

Vision Transformer is an adaptation of the Transformer*
model for the application in Computer Vision. Analogously to the

TABLE II. CNN variations with L being the number of Conv Blocks, ¢ being the
number of feature maps, and D being the dimension of the feature maps.

name L c D MLP head dim.
conv_100k 3 128 32 256
conv_500k 4 256 16 512
conv_2M 5 512 8 1024

ARTICLE pubs.aip.org/aip/aml

TABLE lll. ViT variations, with D indicating the latent dimension, M being the number
of Heads, and L being the number of Transformer layers.

Name D M L MLP head dim.
vit_500k 96 2 4 192
vit_1M 120 4 6 240
vit_5M 240 6 8 720
vit_15M 360 8 10 1440

original Transformer, which was developed for textual data and han-
dles sentences as sequences of tokens, the Vision Transformer treats
images as a sequence of non-overlapping patches. These patches
are embedded into D-dimensional vectors (tokens) but first a linear
transform and then learned position embeddings,” to serve
as input to a conventional Transformer. The Transformer remains
unchanged and consists of multiple layers, which contain a multi-
head self-attention block and an MLP block. To stabilize training,
layer normalization is applied before each component and residual
connections are added after each component.

Our implementation of the ViT uses non-overlapping patches
that are 32 x 32 px in size and 4-10 Transformers with GeLU activa-
tions. We then project the output to a single feature map by using
anMLP Head, which consists of two dense layers with a GeLU activa-
tion function. Finally, we apply average pooling over the remaining
feature map to obtain a single value. An overview of the ViT archi-
tecture is shown in Fig. 3 (right), and our parameter choices are
shown in Table IIL.

D. Training

We train all our models from scratch for 250 epochs, minimiz-
ing the mean squared error (MSE) between predicted and ground
truth overlay values. We split each dataset in 1024 data points for
training and for evaluation. We update our weights using the stan-
dard configuration for the AdamW optimizer, which we combine
with a cosine annealing learning rate scheduler. For best com-
parability, we perform hyper parameter scanning for each model
individually and compare performance with their respective opti-
cal parameters (see Appendix A). In addition, we clip gradients for
weights with a magnitude higher than one and use mixed-precision
training to prevent exploding gradients and reduce memory over-
head, respectively. All models were implemented in Python using
the PyTorch (Lightning) library and trained on NVIDIA RTX 2070
Super and/or NVIDIA A100 GPUs. For all models, the training time
per epoch is roughly ~1 s and the entire training is complete in less
than 5 min (see Appendix D).

IV. RESULTS
A. Full dataset

In the first set of experiments, we train each model on each of
the datasets separately and then evaluate its performance. Figure 4
presents the average MAE across all models on all test datasets, with
the error bars showing the variance over five repetitions. The MAE
directly gives the average difference between the predicted and true
overlay values in nanometers and stays significant sub-nanometer
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FIG. 4. OV reconstruction error for all model and dataset combinations in nanome-
ter. The error bar shows the standard deviation over five repetitions. The name
of the model is written below each bar, with Vision Transformer as vit, Multilayer
Perceptron as mlp, and Convolutional Neural Network as conv. The specifications
for each model can then be found in Table || for all Vision Transformers, in Table ||
for all Convolutional Neural Networks, and in Table | for all Multilayer Perceptrons.

in all cases. This shows the great potential of AI powered overlay
reconstruction in general.

First, comparing the effect of wavefront 0, 1, and 2 scenarios on
the performance of all models reveals a significantly higher recon-
struction error for the random W1 case, while W0 and W2 stay
mostly on the same level, although the W2 dataset is exposed to
strong aberrations in contrast to the WO dataset. This shows that
the models can completely compensate for the effect of the wave-
front aberrations if they remain constant. The performance for the

ARTICLE pubs.aip.org/aip/aml
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0,18 mcie
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3 0,1
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0
Wavefront 0 Wavefront 1 Wavefront 2

FIG. 5. Mean absolute error in nanometer of the best performing model for each
datasets. Wavefront 0, 1, and 2 represent different types of aberrations, and C10
and C16 correspond to the 10 x 10 ym? and 16 x 16 um? uDBO targets, respec-
tively. The name of the best performing model is written above each bar, with
Vision Transformer as vit, Multilayer Perceptron as mip, and Convolutional Neural
Network as conv. The specifications for each model can then be found in Table ||
for all Vision Transformers, in Table Il for all Convolutional Neural Networks, and
in Table | for all Multilayer Perceptrons.

WO case, especially for the C16 4uDBO target, fluctuates randomly
because of the extreme uniformity of the dataset.

Next, comparing the overall performance between the larger,
less-distorted C16 yDBO target and the smaller, more-volatile C10
uDBO target shows an increased error for the C10 yDBO target.
These results are summarized in Fig. 5, which shows the MAE of the
best models for each of the yDBO targets per wavefront aberration.

Finally, we compare the different models and find that convolu-
tional models perform worse than ViT and MLP models in general.
It has the largest MAE and fluctuates the most among all mod-
els. ViT and MLP models perform similarly, while the ViT models
contain fewer parameters and scale better for larger input sizes. In
addition, the MLP models mainly excel in easy scenarios, namely,
the C16 uDBO target in the W0 and W1 cases. In the more chal-
lenging C10 and W2 cases, the performance of the ViT and MLP is
nearly identical. Concerning the number of parameters per model,
the C16 uDBO target generally benefits from larger models, while
the C10 uDBO target prefers smaller models.

B. Limited data budget

In the second set of experiments, we train the models on a ran-
domly selected subset of the training dataset and then evaluate their
performance. Since, in practice, experimentally measured labeled
data are usually sparse, the performance of most ML applications
is limited by the size of the training dataset. However, some model
architectures are more data-efficient than others, which makes them
more suitable for certain applications. Here, we investigate how the
performance and OV accuracy of the models scale with training
dataset size.

We limit the amount of training data logarithmically between
512 and 32 and compare the models on the wavefront 1 and 2
datasets with the C16 and C10 yDBO targets, as we already wit-
nessed similar performance between the wavefront 0 and wavefront
2 datasets in Sec. IV A. Figure 6 shows the MAE of each model
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FIG. 6. OV reconstruction error for differ-
ent training budgets in double log scale.
Each model is visualized using a dif-
ferent color, with Vision Transformer as
vit (blue), Multilayer Perceptron as mip
(green), and Convolutional Neural Net-
work as conv (red). The specifications
for each model can then be found in
Table [l for all Vision Transformers, in
Table |l for all Convolutional Neural Net-
works, and in Table | for all Multilayer
Perceptrons. Some ViT and MLP models
are removed from this plot because their
training would not converge for these
small budgets. The color of the plot rep-
resents the architecture and the darker
the color, the more parameters the model
has.

FIG. 7. Plotting the averaged OV error
and averaged standard deviation in a
double log plot. The largest ViT and
MLP models are removed from this
plot because their training would not
converge for these small budgets.
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except for the largest ViT and MLP models, which did not con-
verge reliably during training with this reduced number of training
points. The corresponding trend that smaller models perform better
on a smaller training budget than their larger counterparts can be
observed for all models, except for the ViT where the performance
of all models is comparable. We also observe in general that models
benefit from more training data, which not only reduces the average
error achieved but also decreases the variance of the results between
models that share the same architecture and model size (see Fig. 7).

Overall, we are able to sustain sub-nanometer precision on
average across datasets, while the ViTs, especially the smaller-sized
models, outperform the CNNs and MLPs in terms of reconstruction
accuracy and consistency for a limited data budget. Smaller-sized
models perform better compared to their larger counterparts, which,
combined with their reduced computational cost, makes them the
more efficient choice for real-life implementations.

V. CONCLUSION

To summarize, we have conducted a quantitative comparison
of several deep learning architectures for yDBO metrology using
different sets of simulated optical metrology data. All models show
sub-nanometer precision even in the presence of experimental noise
and strong wavefront aberrations, while the best models achieve pre-
cisions of even single percents of a nanometer. We identified Vision
Transformers as the leading architecture because of their good per-
formance, scalability, and resilience to aberration. The ViT achieves
leading OV accuracy in almost all test cases. It achieves consistent
sub-nanometer precision over a wide range of training budgets and
model sizes, allowing for maximal flexibility. Finally, the ViT offers
the best computing cost efficiency and scalability for larger metrol-
ogy input data and a higher number of extracted parameters. The
reconstruction of key metrology parameters directly from strongly
distorted images could reduce the demand on the quality of the opti-
cal sensor and allow for faster and less costly measurement systems
while increasing the wafer metrology accuracy.

ACKNOWLEDGMENTS

This work was conducted at the Advanced Research Center
for Nanolithography, a public-private partnership between the Uni-
versity of Amsterdam, Vrije Universiteit Amsterdam, University of
Groningen, the Netherlands Organization for Scientific Research
(NWO), and the semiconductor equipment manufacturer ASML
and was partly financed by a contribution from the National
Growth Fund program NXTGEN HIGHTECH through the “(Nano)
Metrology Systems” project.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

L. de Wolf and M. Lipp contributed equally to this work.

L. de Wolf: Data curation (equal); Formal analysis (lead); Method-
ology (lead); Software (lead); Validation (equal); Writing - original

pubs.aip.org/aip/aml

draft (supporting); Writing - review & editing (equal). M. Lipp:
Conceptualization (lead); Data curation (equal); Methodology (sup-
porting); Software (supporting); Supervision (equal); Validation
(equal); Visualization (lead); Writing - original draft (lead); Writ-
ing - review & editing (equal). M. Cochez: Project administration
(equal); Supervision (equal); Writing — review & editing (equal).
A. den Boef: Methodology (equal); Supervision (equal); Writing —
original draft (equal). L. V. Amitonova: Funding acquisition
(lead); Project administration (equal); Resources (lead); Supervision
(equal); Writing - review & editing (equal).

DATA AVAILABILITY

The Python code for the neural network models imple-
mented in this paper is available on GitHub: https://github.com/
MLippARCNL/Vision-Transformer-for-Optical-Wafer-Metrology.

APPENDIX A: HYPER-PARAMETER TUNING

To ensure equal evaluation conditions, we conduct extensive
hyper-parameter search for all model variants, optimizing both the
learning rate and weight decay. We refrain from optimizing for all
datasets and instead lay our focus on the WO since optimizing on
the other wavefront aberrations may result in over-specific hyper-
parameter configurations. In addition, by only focusing on the
aberration-free case, we allow ourselves to assess whether the hyper
parameters generalize well to different types of distortions. However,
we do differentiate between target sizes and search for hyper para-
meters for both the C10 and C16 targets separately since early testing
indicated significant differences between target sizes. Optimization
was performed using Bayesian optimization; more specifically, we
used tree-structured Parzen estimaton (TPE) algorithm, as imple-
mented in Optuna. For each trial, we train each model for 75 epochs
on random subsets (75%) of the training data and use the rest for
validation. Final parameter configurations were determined after 25
trials.

APPENDIX B: MODEL VARIANCE WITH LIMITED
TRAINING BUDGET

Figure 7 shows the trend of the averaged spread of the MAE
when changing the training budget for all three architectures, both
targets and the W1 and W2 datasets. As expected, the spread and
MAE generally increases for smaller budgets and for the W1 com-
pared to the W2 dataset. The different scales of the y axis and the
logarithmic scaling makes it challenging to precisely compare the
graphs, but the ViT model generally exhibits the lowest error and
smallest spread. This matches the analysis in Sec. IV B.

APPENDIX C: CONVENTIONAL OVERLAY APPROACH

In order to explain the signal formation in DBO (e.g., uDBO),
we use a simple plane-wave propagation model. A schematic draw-
ing of the signal formation is shown in Figs. 1 and 8. The metrology
target consists of two stacked gratings, whose +1st diffraction orders
are captured by a camera. Figure 1 shows that the intensities of both
orders are equal, if both gratings are aligned, e.g., zero overlay. How-
ever, in case of a small shift between the gratings, an asymmetry in
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FIG. 8. On the left, the metrology mark with two regions of interest and a schematic
of the retrieved +1st diffraction order are shown; on the right, the DBO experimen-
tal setup is sketched, and below, one can see the side view of two pads with
programmed overlay.5®

the intensities AI arises, which scales linearly with the overlay value
oV,

Al=T"-T'=Kx0V, (C1)

where I, I™! are the intensities of the +1st diffraction orders and K
is the unknown sample constant.

To remove this unknown constant from the equation, we
consider two pairs of grating with programmed overlay +d, such that

Alg=T") - Iy =K x (OV - d), (C2)

ALy =IT -} =K x (OV +d). (C3)

Combining both equations and solving for OV yields

oV = d( AI+d + AI_d)

c4
Alg— ALy (c4)

Figure 8 shows top and side views of the resulting DBO metrol-
ogy target and a schematic of the expected +1st diffraction order
with indicated regions of interest as well as the measurement setup.

APPENDIX D: RUN TIME EVALUATION

Figure 9 shows a comparison between the run times of our
models on our computing infrastructure (NVIDIA RTX 2070 with

ARTICLE pubs.aip.org/aip/aml

10,000

Time [ms]

MW Training time per image

M Inference time per image

FIG. 9. Time for training and evaluation per image in batch mode with the y-axis
plotted in ms in the logarithmical scale.

8 GB VRAM, 128 GB RAM). For the measurement, we disabled log-
ging, excluded the data loading time, and averaged over 100 epochs
with 16 batches of 64 images. The time is remeasured in ms and
plotted with the logarithmical scale to highlight the differences for
shorter run times.

It is directly visible that inference is faster than training for all
models, which is expected since during inference the backpropaga-
tion is not calculated. Similarly, larger models have longer run times
than their smaller versions for the same architecture, which is also
expected.

The CNN architecture has the slowest times compared to the
other models, specifically when taking into account their small num-
ber of parameters. However, they scale best for larger image sizes
since the kernel size, and therefore, the number of parameters of a
convolutional layer, does not depend on it.

In contrast, the MLP network has the fastest times, which is
mainly caused by the small pixel size we considered during this
study. Because a dense layer connects all inputs and outputs, the
number of parameters scales exponentially with the input size.
Hence, in terms of run time and computational cost, MLPs are only
applicable for relatively small sizes.

In between both previous architectures, the ViT combines fast
execution, good performance, and good scalability in terms of image
size as well as number of training images. As such, it is the most
versatile contender with the option to adjust its size to the specific
requirement.
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