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zPIE: an autofocusing algorithm for ptychography
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An autofocusing algorithm for ptychography is proposed.
The method optimizes a sharpness metric that would be
observed in a differential interference microscope and is
valid for both amplitude and phase modulating specimens.
We experimentally demonstrate that the algorithm, based
on the extended ptychographic iterative engine (ePIE), cali-
brates the sample–detector distance with an accuracy within
the depth of field of the ptychographic microscope. We show
that the method can be used to determine slice separation
in multislice ptychography, provided there are isolated
regions on each slice of the specimen that do not axially
overlap. © 2020 Optical Society of America

https://doi.org/10.1364/OL.389492

Ptychography has gained wide popularity throughout the last
decade [1,2]. It enables computational reconstruction of both
complex illumination and specimen transmission functions
in coherent scanning microscopes, in principle without the
use of lenses [3–5]. The large amount of diversity in ptycho-
graphic data sets makes it possible to infer additional properties
of the experimental setup, such as the degree of spatial and
spectral coherence [6–8]. In addition, ptychography has the
ability to correct for misalignment and calibrate experimental
setups [9]. Lateral position correction algorithms have been
reported to mitigate the effect of sample drift and errors in the
encoders of x y translation stages [10–13]. On the other hand,
axial uncertainty in the sample–detector distance results in
scaling of the reconstruction pixel size and as such introduces
spatially dependent artifacts [14]. In multislice ptychography
[15] the slice separation between layers of a thick specimen is a
priori unknown, but can be optimized using gradient descent
techniques [16]. Here, we propose an algorithm that calibrates
both the sample–detector distance for single-slice ptychog-
raphy and the axial separation in multislice ptychography.
Previous work by others have demonstrated autofocusing
in ptychography using a sharpness metric that is sensitive to
amplitude-modulating specimens [17]. Here, we propose an
approach sensitive to both amplitude- and phase-modulating
specimens, which makes the technique of use in particular for
hard X rays where the object imprints mainly phase contrast
on the incoming illumination. Unlike holography, the method
requires no a priori knowledge and uses the unique feature
of ptychography that diffraction intensities from adjacent

scan positions can be made self-consistent only when the
sample–detector distance and the slice separation are estimated
correctly.

The effect of axial misalignment is illustrated in Fig. 1. In
ptychographic reconstruction algorithms, the physical coor-
dinates of the translation stage encoder r j are converted into
discrete pixel units p j via p j = r j/1x , where 1x = λz/D is
the object reconstruction pixel size, λ denotes wavelength, D is
the physical detector size in units of meters, and j = 1, . . . , J
denotes scan position. Miscalibration of the sample–detector
distance by an amount δz results in a perturbed scan grid with
coordinates

p̄ j =
Dr j

λ (z± δz)
≈ p j ∓

Dr j

λz2
δz, (1)

where we assume δz� z. The situation in Fig. 1 corresponds
to δz< 0 resulting in an inflated scan grid. From Eq. (1) and
Fig. 1, it is expected that axial misalignment leads to spatially
dependent grid miscalibration. This in turn causes reduced
reconstruction quality due to inconsistencies in the forward
model of the inversion algorithm. Below we describe an auto-
focusing algorithm that detects and corrects for scan grid
miscalibration, which results in a determination of the optimal
sample–detector distance z.

The autofocusing algorithm termed “zPIE” (“PIE” being the
ptychographic iterative engine), is summarized in Algorithm 1.
For a predetermined number of iterations n an ePIE algorithm
[5] is used to get estimates for both the illumination P and
object O. The estimated object is propagated to K distances
around the reconstruction plane using an angular spectrum
propagator [18] given by

O(x , y , z)=F−1 Hk1z( fx , f y )FO(x , y , 0), (2)

where (x , y ) and ( fx , f y ) denote real and reciprocal space coor-
dinates, respectively, and the transfer function H is given by

Hk1z( fx , f y )= exp

[
i2π/λk1z

√
1− ( fx x )2 − ( f y y )2

]
.

(3)

The propagation interval 1z is chosen to be on the order
of the depth of field [16,19], which under the paraxial
approximation is given by
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Fig. 1. Axial misalignment in the sample–detector distance
results in scan grid miscalibration. The black coordinates (dashed
line) illustrate an inflated scan grid as compared to the true encoder
positions (gray coordinates, solid line). The depicted situation
arises when underestimating the sample–detector distance, while an
overestimation would result in a compressed scan grid.

Algorithm 1. Axial position correction algorithm
(zPIE)

1: Procedure zPIE (P , O, z)
2: δz← 0
3: η← 0.7 F η: damping constant
4: c← 1 F c : step size
5: for m← 1 to n do F n: number if iterations
6: (P , O)← ePIE(P , O, z)
7: for k←−K /2 to K /2 do F get sharpness metric
8: s (k)= S[F−1 Hk1zFO]

9: δz← ηδz+ c
∑K

k=1 s (k)k1z∑
k s (k) F update search direction

10: z← z− δz F update z
11: return P , O, z

1z= λ(2z/D)2. (4)

The sharpness of the propagated object is evaluated using the
total variation (TV) functional

S (z)=
∫∫ √

|∂x O (x , y , z)|2 +
∣∣∂y O (x , y , z)

∣∣2 + εdxdy ,

(5)
where the derivatives may be approximated by subtracting row-
and column-shifted and unshifted versions of the input func-
tion from each other. The parameter ε > 0 in Eq. (5) is a small
constant that makes the TV functional differentiable when
the lateral object gradient is zero. In what follows, we choose
ε= 10−2. Intuitively S(z) mimics the sharpness that would be
observed in a differential interference contrast microscope with
small lateral offset [20]. In particular, the sharpness metric is
valid for both amplitude- and phase-modulating specimens, the
latter of which was not considered in previous work [17]. The
sharpness metric S can be expanded into a second-order Taylor
series in z:

S(z)≈ S(z′)+ (z− z′)∂z S(z′)+
1

2
(z− z′)2∂2

z S(z′), (6)

where z′ is an arbitrary point. At the optimum z∗, the first-order
term vanishes:

S(z)≈ S(z∗)+
1

2
(z− z∗)2∂2

z S(z∗). (7)

Since S(z) is symmetric around z∗ to second order, the feed-
back term

∑
k s (k)k1z/

∑
k s (k) in Algorithm 1 is zero at

the optimum. For non-optimal z, the skewness of the Taylor
series expansion of S(z) can be used to compute a feedback on
z. In addition to the feedback term, the search direction δz has
a damped momentum term η, which allows the algorithm to
accelerate the search in the case of repeated steps in the same
direction [21]. We note that the search can be accelerated by
increasing the proportionality factor c in front of the feedback
term in Algorithm 1. However, this can potentially result in less
numerical stability and overshooting around the optimum. All
results reported here were obtained with K = 10, c = 1, and
η= 0.7. Last, we note that the ePIE subroutine in Algorithm 1
depends on z, which implies resampling the scan grid according
to Eq. (1).

We tested the performance of the autofocusing method
using the experimental setup depicted in Fig. 2. A supercontin-
uum laser spectrally filtered to a wavelength of λ= 708.9 nm
(1λ= 0.6 nm) was spatially filtered and focused to illuminate
a sample mounted on an x y translation stage (2× Smaract
SLC-1770-D-S). The sample–detector distance z was set to
be approximately 35 mm. An AVT Prosilica CCD camera
(1456× 1936 pixels with pixel size of 4.54 µm) was used to
record a set of 200 diffraction intensities downstream the speci-
men. The average linear overlap in the scan was around 80%
[22] at a beam size (FWHM) of 572 µm. We used a USAF res-
olution target (Thorlabs R3L1S4P) as a test sample, as it allows
to compare the physical dimensions of the reconstructed image
with the nominal dimensions according to the manufacturer.
In this way, we validate the retrieved sample–detector distance
z, assuming λ and D are known. The experimental results are
shown in Fig. 3. Figures 3(a) and 3(b) show an object recon-
struction obtained with an initial estimate of z0 = 35.5 mm and
using zPIE. The smallest resolved feature, group 7/element 1,
has a line width of 3.9 µm, indicating a half-period spatial reso-
lution close to the diffraction limit of 3.8 µm. The line widths
of group 4/element 1 have a size of 31.1 µm, which deviates
less than 1% from the nominal value of 31.3 µm. In contrast,
Figs. 3(c) and 3(d) show a reconstruction obtained with an ini-
tial estimate of z0 = 35.5 mm without using zPIE. While for the
larger spatial structures the reconstruction quality is comparable
to Fig. 3(a), the reconstructed high-resolution features suffer
from an incorrect sample–detector distance estimate, as seen by
comparing Figs. 3(b) and 3(c). Figure 3(e) shows the estimated
z as a function of iteration. Here we varied the initial estimate of
the sample–detector distance from 30 mm to 40 mm and used
zPIE to find the correct value of z. For small excursions around

Fig. 2. Experimental setup. A spatially filtered (L, lens; PH, pin-
hole) beam is focused to produce a divergent beam illuminating a
sample mounted on a x y translation stage. The diffraction data are
recorded in a lensless geometry.
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Fig. 3. Ptychographic reconstruction (a), (b) with autofocus and
(c), (d) without autofocus using an initial object–detector distance
of z0 = 35.5 mm. (e) Estimated sample–detector distance z versus
iteration with varying initial estimates z0. (a), (b) correspond to the
central dotted-dashed line in (e).

the true value, the algorithm recovered the sample–detector
distance and reconstructed both beam and object within 200
iterations. For larger deviations, the algorithm required more
iterations, but consistently improved the estimated sample–
detector distance in the correct direction. Those estimates that
converged within 200 iterations exhibited final values of z in the
range of 34.92 mm to 34.99 mm. Thus, the uncertainty in the
retrieved sample–detector distance remained within the depth
of field of the experimental setup, which is about 80 µm [cf.
Eq. (4)] for the experimental configuration in Fig. 2.

We carried out a second experiment to test the performance
of zPIE in recovering the slice thickness of a thick substrate.
To this end, we turned around the USAF resolution target and
used zPIE to estimate the new sample–detector distance. From
the difference of the estimated sample–detector distances of
the experiments with the sample facing the detector and the
sample flipped around, the substrate’s thickness can be inferred
provided its refractive index is known. The substrate of the
USAF resolution target has a geometrical thickness of 1.5 mm
and a refractive index of n = 1.52 (soda lime glass) at a wave-
length of 708.9 nm. Using zPIE, we obtained an increase in
the estimated equivalent free-space sample–detector distance
by 0.97± 0.04 mm. One might expect a larger value due to
the increased optical path inside the soda lime glass substrate.
However, due to the higher refractive index inside the substrate,
the estimated free-space sample–detector distance is decreased
by a factor of n, forming a virtual image closer to the exit surface.
This is illustrated in Fig. 4(a). Here a signal emanating from the
real point source (black point) on the left side of the substrate
refracts at the glass–air interface resulting in a signal equivalent
to a virtual point source (gray point) closer to the right boundary
of the medium and traveling in free space. Thus, the difference
in the sample–detector distance before and after flipping the

Fig. 4. (a) Due to refraction at the glass–air interface and assumed
free-space propagation from the sample to the detector, the autofo-
cusing algorithm recovers a virtual point source inside the specimen.
(b) Experimental geometry for multislice ptychography.

sample of 1 mm found by zPIE is due to neglecting refraction at
the interface and assuming free-space propagation. The correct
geometrical thickness of the substrate t = 1.5 mm is obtained by
multiplying the virtual free-space difference in sample–detector
distance with the refractive index of the substrate.

In a third experiment, we used the same procedure as above
to estimate the slice separation in multislice ptychography.
Figure 4(b) depicts a microscopy slide with fingerprints on
the front and back sides facing the illumination and detector,
respectively. The glass slide (Thermo Scientific, Menzel Gläser)
has a geometrical thickness of 1 mm and a refractive index of
1.52 at a wavelength of 708.9 nm. On the front and back sides
of the slide, fingerprints were placed such that there were both
overlapping and non-overlapping regions in the axial direction.
First, we carried out single-slice experiments on the axially
non-overlapping regions, using zPIE to recover the thickness
of the glass substrate. This resulted in a (geometrical) thickness
of t = 1.04± 0.04 mm, where the uncertainties are estimated
by repeating the experiment at different locations. A value 1.52
times lower was used in the 3PIE algorithm [15] to emulate the
equivalent free-space distance between the individual slices.
The results of the multislice reconstruction are shown in Fig. 5.
Figures 5(a) and 5(b) show the recovered object amplitude using
single- and multislice ptychography, respectively. Figure 5(b)
shows the product of the individual object amplitudes

∏
k |Ok |.

Comparing the amplitude reconstructions in Figs. 5(a) and 5(b)
indicates that the single-slice model exhibits inferior spatial res-
olution in recovering the back-slice of the specimen. Figure 5(c)
shows the reconstructed probe, which is a 500 µm diameter
pinhole with Scotch Tape stuck on top of it and imaged onto the
backside of the specimen. The Scotch Tape generates a highly
structured beam with increased spatial frequency content,
resulting in reduced dynamic range requirements on the detec-
tor [15,23–26]. Figure 5(d) shows the individual reconstructed
slices obtained by 3PIE overlain in green (front) and red (back).

The results reported here show that zPIE is a useful cali-
bration tool for ptychography. For single-slice ptychography,
we used a USAF resolution target to verify that the algorithm
reconstructed the correct pixel size and thereby the correct
sample–detector distance. Flipping the sample around and
knowing the refractive index a priori, zPIE allowed us to meas-
ure the USAF target’s substrate thickness. For the multislice
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(a) (b)

(c) (d)

Fig. 5. Comparison of (a) single- and (b) multislice amplitude
reconstructions of crossed fingerprints. (b) Both object slices projected
into the same plane. (c) 3PIE beam reconstruction. Hue and brightness
show phase and amplitude, respectively. (d) Overlay of back (green,
illumination-sided) and front (red, detector-sided) slices of object
reconstruction.

experiments, a biological multislice specimen was chosen to
show both that the sharpness metric in Eq. (5) holds for mixed
amplitude and phase specimens and that zPIE can be used to
calibrate slice separation in multislice ptychography. With
regard to the latter, we investigated a specimen that contained
slices with regions that were not obscured by the other respective
slice. Rewriting Eq. (4) as 1z= 4(1x )2/λ, it is seen that our
autofocusing method works best in the presence of sufficiently
small features of size 1x , which diffract under axial displace-
ment1z. In the case of both 3D specimens where multiple slices
obscure each other and smooth 2D specimens, small calibra-
tion markers at the lateral resolution limit of the system may
be added to the side of the specimen to calibrate the sample–
detector distance. Furthermore, zPIE may serve as a useful tool
in particular for multislice near-field ptychography [25]. As
has been noted previously [15], in single-slice ptychography an
imprecise knowledge of the quadratic phase in the integrand of
the Fresnel diffraction integral can be absorbed into the probe.
In contrast, in multislice ptychography, this is not the case due
to scattering from multiple slices of the sample. In summary,
we have shown an autofocusing algorithm for ptychography
that allows to calibrate the sample–detector distance and the
slice separation in single- and simple multislice specimens. We
expect the method to find application in automated calibration
applications for ptychographic scanning microscopes.
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